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Abstract

The Duplication-Loss-Coalescence parsimony model (DLC-model) is invaluable for

analyzing the complex scenarios of concurrent duplication-loss and deep coalescence

events in the evolution of gene families. However, inferring such scenarios for already

moderately-sized families is prohibitive due to the computational complexity involved.

To overcome this stringent limitation, we make the first step by describing a flexible

Integer linear programming (ILP) formulation for inferring DLC evolutionary scenarios.

Then, to make the DLC-model more scalable, we introduce four sensibly constrained

versions of the model and describe modified versions of our ILP formulation reflect-

ing these constraints. Our simulation studies showcase that our constrained ILP for-

mulations compute evolutionary scenarios that are substantially larger than scenarios

computable under our original ILP formulation and the original dynamic programming

algorithm by Wu et al. Further, scenarios computed under our constrained DLC-models

are remarkably accurate compared to corresponding scenarios under the original DLC-

model, which we also confirm in an empirical study with thousands of gene families.



Paszek et al. 3

1 Introduction

Reconstructing gene families’ evolutionary histories, referred to as gene trees, is central to

understanding gene and protein function. Gene trees make comparative and investigative

studies possible that illuminate relationships between the structure and function among or-

thologous groups of genes and are an indispensable tool for assessing the functional diversity

and specificness of biological interlinkage for genes within the same family (Ohno, 1970;

Koonin, 2005; Lynch and Conery, 2000; Page, 1994; Arvestad et al., 2004).

Crucial for understanding evolutionary histories of gene families is contemplating them

against a respective species phylogeny, i.e., the evolutionary history of species that host(ed)

the genes under consideration. This approach is known as gene tree reconciliation, and it can

directly reveal the most valuable evolutionary events of interest, such as (i) gene duplication,

(ii) gene loss, and (iii) deep coalescence or incomplete lineage-sorting (which appear as a

result of a genetic polymorphism surviving speciation).

Traditional tree reconciliation approaches, while computationally efficient, are rather lim-

ited in practice, as they either only account for duplication and loss events or, on the other

hand, only for deep coalescence events (Wu and Zhang, 2011; Górecki and Tiuryn, 2006;

Maddison, 1997). Beyond the traditional approaches, recently, a robust unified duplication-

loss-coalescence (DLC) approach has been developed that simultaneously accounts for du-

plications, losses, and deep coalescence events.

In particular, Rasmussen and Kellis, 2012 originally developed a rigorous statistical model

referred to as DLCoal. Then, a computationally more feasible parsimony framework, which

we refer to here as DLC-model, was developed by Wu et al., 2014. The DLC-model is

a discrete version of the DLCoal model. It was shown to be very effective in identifying

ortholog/paralog relations and accurate inference of the duplication loss events. Wu et al.

additionally presented an optimized strategy for enumerating possible reconciliation scenarios

and a dynamic programming solution to find the optimum reconciliation cost; this algorithm

is implemented in the “DLCPar” software package (Wu et al., 2014). For convenience, from
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now on we refer to their implementation as DP (dynamic programming).

While it has been demonstrated that DLC-model is computationally more feasible when

compared to DLCoal, DP is still only applicable to reconciliation problems involving less

than 200 genes. Limiting evolutionary studies to such a small number of genes is highly

restrictive in practice, where frequently gene families with thousands of genes and hundreds

of host species appear (Li et al., 2006). Further, DP is not scalable due to its exponential

runtime (Du et al., 2019a). Naturally, there is a demand for novel models that are (i)

efficiently computable and (ii) comparable to DP in terms of accuracy.

This work presents a non-trivial and flexible integer linear programming (ILP) formu-

lation of the DLC-model optimization problem. We formulate four novel and constrained

DLC-models for improved scalability and use our ILP formulation to validate these con-

strained models. That is, our models have smaller solution space and, therefore, are more

efficiently computable than the original DLC-model (see “Our contribution” for more details).

Related work. In recent years, there has been an increased interest in phylogenetic methods

involving simultaneous modeling of duplication, loss, and deep coalescence events (Szöllősi

et al., 2014; Du et al., 2019c). For example, recently, an approach for co-estimation of the

gene trees and the respective species tree based on the DLCoal model was presented (Du and

Nakhleh, 2018). Further, Chan et al., 2017 showed a parsimony framework for the reconcil-

iation of a gene tree with a species tree by simultaneously modeling DLC events as well as

horizontal gene transfer events. While promising, their approach remains computationally

challenging.

Recently, Carothers et al., 2020 have independently developed an ILP formulation for the

DLC-model that overlaps with our preceding work (Ansarifar et al., 2020). Notably, their

formulation showed comparable results with DP in experiments.

Our contribution. We developed a flexible ILP formulation that solves DLC-model. Dur-

ing this formulation development, we observed formal issues with the original definition of

the DLC-model (Wu et al., 2014). Consequently, we present corrected and improved model
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definitions equivalent to the original model definitions in this work. Especially, we corrected

problems with the definition of a partial order on gene tree nodes, which could otherwise

lead to incorrect scoring of deep coalescence events (see Section 2 for the full updated model

definitions).

Further, we investigated novel approaches based on the original DLC-model yielding

more computationally feasible but still biologically relevant models. In particular, we ob-

served that the advanced time complexity of DP originates from allowing the duplications

to appear at any edge of the gene tree, even if the data may not support such occurrences.

While this flexibility allows accounting for all potentially possible DLC scenarios, we show

that constraining the duplication locations to those with direct evidence of duplications will

dramatically improve the efficiency of computing optimum reconciliations (without losing

the accuracy).

The second major cause of the DLC-model’s computational complexity is the ordering

of gene tree nodes within the same locus. While such ordering is crucial for proper counting

of the incomplete lineage sorting events, the accurate order of gene tree nodes can be often

inferred using the molecular clock methods (Suchard et al., 2018; Sagulenko et al., 2018).

Therefore, we can eliminate the computational complexity that stems from the enumeration

of all possible gene tree orderings currently required by the DLC-model.

Consequently, to advance the applicability of DLC-model, we propose four additional

models and the respective (additionally constrained) ILP formulations based on the above

observations (see Section 2.4).

To evaluate the performance of the ILPs and test our constrained models, we designed

a comprehensive simulation study with a range of parameters derived from the 16 fungi

dataset (Rasmussen and Kellis, 2012), which became a standard for duplication-loss-coalescence

simulations (Molloy and Warnow, 2019; Du et al., 2019b; Wu et al., 2014). As a result, we

observed that the unconstrained ILP is generally more scalable than DP and can manage

complex instances, which were infeasible for DP by Wu et al. (see Section 4 for more de-
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tails). Further, most of the constrained ILPs proved to be efficient even on larger datasets

with more than 200 genes, where DP and the unconstrained ILP failed. Out of the three

highly efficient ILPs, two were also remarkably accurate. In particular, they were accurate

for 98.3% of datasets, while reducing the computational time significantly.

Next, we evaluated our ILP formulations on a baseline empirical dataset with 5, 351 gene

families in fungi (Butler et al., 2009). This study demonstrated the practical advantage of our

proposed model constraints. In particular, fixing coalescence orders using the strict molecular

clock assumption proved to be highly effective. In combination with duplication constraints,

this strategy then yields a highly efficient method. Crucially, we additionally developed

a novel efficient rooting strategy for weighted gene trees using the classic duplication-loss

model (Page, 1994) and demonstrated its applicability on this dataset.

Finally, we note that an essential advantage of using ILPs is that one can terminate an

ILP solver early but still achieve a good approximation of the optimum reconciliation cost

due to the intricate optimization algorithms used by ILP solvers.

2 Methods

In this section, first, we introduce a largely revised and corrected DLC-model definitions

and other preliminaries. Secondly, we describe our core (unconstrained) ILP formulation.

Next, we introduce the biologically-significant constraints to DLC-model and the respective

constrained ILP formulations. Finally, we conclude with a discussion of our ILP formulations’

complexity and an extension to compute all optimum solutions.

2.1 Basic Definitions

Definitions and terminology introduced in this work are corrected, and for clarity, modified

versions originating from Wu et al., 2014.

A tree T = (V (T ), E(T )) is a rooted binary tree, where V (T ) and E(T ) denote the set of
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nodes and the set of directed edges (u, v), respectively. By L(T ) we denote the set of leaves

and by I(T ) the set of internal nodes of T , i.e., V (T )\L(T ). Let r(T ) denote the root node.

By V̇ (T ) we denote the set V (T ) \ {r(T )}. For a node v, c(v) is the set of children of v

(note that c(v) is empty if v is a leaf), p(v) is the parent of v, and e(v) denotes the branch

(p(v), v). Let T (v) be the (maximal) subtree of T rooted at v.

Let ≤T be the partial order on V (T ), such that u ≤T v if and only if u is on the path

between r(T ) and v, inclusively.

A species tree S represents the relationships among a group of species, in which each leaf

is a species. A gene tree G is a tree in which each leaf is a gene labeled by a species from

which it was sampled. From now on, we assume that for every pair of G and S, the set of

all species labels from G is a subset of L(S).

The least common ancestor mapping, M : V (G) → V (S), from gene tree nodes to

species tree nodes is defined as follows: if g is a leaf node, then M(g) is the species-label of g

(i.e., a leaf from S); if g has two children g′ and g′′ then M(g) is the least common ancestor

of M(g′) and M(g′′).

2.2 DLC-model

Definition 2.1. (DLC scenario) Given a gene tree G and a species tree S, the DLC

(reconciliation) scenario for G and S is a tuple 〈M,L,O〉, such that

• M : V (G) → V (S) denotes a species map that maps each node of gene tree to

a species node. In this work, species maps are fixed to the least common ancestor

mapping.

• L denotes the locus set.

• L : V (G)→ L is a surjective locus map that maps each node of gene tree to a locus.

• For a species node s, let parent_loci(s) be the set of loci that yield a new locus in s

defined as {L(p(g)) : g ∈ V̇ (G), M(g) = s and L(g) 6= L(p(g))}. Then, O is a partial
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order on V (G), such that, for every s and every l ∈ parent_loci(s), O is a total order

on the set of nodes O(s, l) := {g : g ∈ V̇ (G), M(g) = s and L(p(g)) = l}.

Subject to the constraints.

1. For every locus l, the subgraph of the gene tree induced by L−1({l}) is a tree. Moreover,

every leaf of such a tree that is also a leaf in G must be uniquely labeled by species.

2. For every g, g′ ∈ V (G) if g ≤G g′, then g ≤O g′.

3. A node g is called bottom if no child of g maps toM(g). Then, for every bottom node

x ∈ O(s, l), every non-bottom node y ∈ O(s, l), we have x >O y. Additionally, if s is

not the root of S, then for every bottom node z mapped to p(s), y >O z.

The first constraint assures that all gene nodes with the same locus form a connected

component; i.e., each locus is created only once. The second constraint incorporates the gene

tree’s topology in partial order O. Finally, the third constraint guarantees that all nodes are

properly ordered by O.

Inserting Implied Speciation Nodes. For the proper embedding of a gene tree into a

species tree, we require additional degree-two nodes inserted into the gene tree.

Given a gene tree, we define the transformation called insertion of an implied speciation

as follows. The operation subdivides an edge (g, g′) ∈ G with a new node h, called an implied

speciation, and sets M(h) = p(M(g′)) if (i) either p(M(g′)) > M(g), or (ii) p(M(g′)) =

M(g) and g is not a bottom node ofM(g). Note that h becomes a bottom node after the

insertion.

Then, we transform G by a maximal sequence of implied speciation insertions. It is not

difficult to see that the resulting gene tree with implied speciation nodes is well defined and

unique.

Counting evolutionary events. We first define the species map M, then we transform

the gene tree by inserting the implied speciation nodes. Next, we define the locus map and
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partial order O on the transformed gene tree. Finally, having the DLC scenario, we can

define the evolutionary events induced by the scenario.

We start with several definitions. Let s be a node from the species tree. By ⊥(s) we

denote the sets of all bottom nodes mapped to s. Similarly, the set of top nodes of s is

defined as >(s) := ⊥(p(s)) if s is not the root, and >(r(S)) := ∅, otherwise. By nodes(s)

we denote the set of gene nodes mapping to s (i.e.,M−1({s}). The internal nodes of s are

defined as int(s) := nodes(s) \ ⊥(s).

For G, S and α = 〈M,L,O〉, we have the following evolutionary events at s ∈ V (S).

• Duplication: A non-root gene tree node g is called a duplication (atM(g)) if L(g) 6=

L(p(g)). Additionally, we call g the locus root. We then say that a duplication happened

on edge (p(g), g).

• Loss: A locus l is lost at s if l is present in s or at the top of s but l is not present at

the bottom of s. Formally, l is lost if l ∈ L(>(s) ∪ nodes(s)) and l /∈ L(⊥(s)).

• ILS at speciation: Let C(s, l) be the set of all gene lineages (g, g′) such that g

is a top node at s, whose loci is l, and g′ is mapped to s. Then, locus l induces

max{|C(s, l)| − 1, 0} (deep) coalescence events at speciation s.

• ILS at duplication: For each duplication d, whose parent has loci l, a gene lineage in

speciesM(d) at locus l is contemporaneous with d if the lineage starts before and ends

after the duplication node d. Let K(d) denote the set of all edges contemporaneous

with d. Formally, K(d) = {g : g ∈ O(M(d),L(p(d)) and g >O d >O p(g)}. Then, the

duplication d induces max{|K(d)| − 1, 0} (deep) coalescence events.

Problem 1 (DLCParsimony). Given G, S, and real numbers cD, cL, and cDC, the reconcil-

iation cost for a DLC scenario α = 〈M,L,O〉 is

Rα :=
∑

s∈V (S)

cD · nDα(s) + cL · nLα(s) + cDC · (nCSα(s) + nCDα(s)),
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where nDα(s), is the total number of duplication nodes at s, nLα(s) is the total number of lost

loci at s, and nCSα(s) is the total number of coalescence events at speciation s, and nCDα(s)

is the total number of coalescence events at duplications mapped to s in the scenario α.

2.3 Unconstrained ILP formulation

We now present an Integer Linear Programming (ILP) formulation for solving the DLCPar-

simony problem. From now on, we refer to this formulation as M0.

2.3.1 Model Parameters

First, we define global parameters that can be used to constraint the formulation (see con-

strained models in the next section).

Dg Binary parameter for each g ∈ I(G). It is 1, if a duplication event is allowed in

one of the children of g. In this section Dg = 1 for all g, since we do not want to

constrain our model.

2.3.2 Model Notation

We now define the notation that will be used throughout the formulation.

I(s) Possible order values (indices) of gene nodes within a total ordering of gene nodes

induced by O and restricted to species node s. That is, I(s) = {1, ..., |int(s)|}

N The maximum possible number of loci; i.e., maximum possible number of dupli-

cations plus one. In particular, N = 1 +
∑

g∈I(G)Dg. Further, we denote the set

{1, . . . ,N} by [N ].

Fg Indicates the locus index of node g and is defined as Fg :=
∑

g′∈I(G),g′≤ord gDg′ ,

where ≤ord is some total order on I(G). Fg guarantees that duplication at node g

yields a new and distinguished locus Fg in the locus tree.

2.3.3 Decision Variables

Now we declare the core variables needed for the ILP formulation.
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xuv A binary variable for edge (u, v) ∈ E(G). Equals to 1 if v is a duplication; otherwise

0.

ygl Binary variable. 1 if node g ∈ V (G) is assigned to locus l; otherwise 0.

els Binary variable. 1 if locus l is lost at species node/branch s; otherwise 0.

cls The number of deep coalescence events at a speciation s induced by the locus l.

dgl If g is a duplication and l = L(p(g)), then it denotes the number of corresponding

deep coalescence events induced by locus l. Otherwise, dgl = 0.

zgo Binary variable. 1, if node g ∈ V (G) is assigned to order o ∈ I(M(g)).

wgol Binary variable. 1, if node g ∈ V (G) is assigned to order o and locus l.

mgol Binary variable. 1, if node g is assigned to order o and locus l and one of children

of g is a locus root (i.e., a duplication event happened immediately below g).

2.3.4 Model constraints

Finally, we describe the objective function and the model constraints using the above vari-

ables. In particular, the objective function in Equation (1) (below) minimizes the DLC

score. The first term in the objective function calculates the total number of duplication

events, whereas the second term computes the number of loss events and coalescence events

at speciations. The coalescence events at duplications are computed by the last term in the

objective function.

min ζ =
∑

e∈E(G) xe +
∑

s∈V (S)

∑
l∈[N ](els + cls)

+
∑

s∈V (S)

∑
l∈[N ]

∑
g∈int(s) dgl (1)

s. t.
∑

e=(g,g′)∈E(G) xe ≤ Dg g ∈ V (G) (2)∑
g∈⊥(s) ygl ≤ 1 ∀s ∈ L(S), l ∈ [N ] (3)∑
l∈[N ] ygl = 1 ∀g ∈ V (G) (4)

yr(G),1 = 1 (5)

Fgxe ≤
∑

l∈[N ] lyg′l ≤ Fgxe +N (1− xe) ∀e = (g, g′) ∈ E(G) (6)
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−N xgg′ ≤ yg′l − ygl ≤ N xgg′ ∀(g, g′) ∈ E(G), l ∈ [N ] (7)∑
g∈>(s) ygl − |V (G)|(els +

∑
g∈⊥(s) ygl) ≤ 0 ∀l ∈ [N ], s ∈ V (S) (8)∑

g∈>(s),(g,g′)∈E(G),g′∈nodes(s) ygl − 1 ≤ cls ∀l ∈ [N ], s ∈ V (S) (9)∑
o∈I(s) zgo = 1 ∀s ∈ V (S), g ∈ int(s) (10)∑
g∈int(s) zgo = 1 ∀s ∈ V (S), o ∈ I(s) (11)∑

o′∈I(s),o′≤o zg′o′ ≤ 1− zgo ∀s ∈ V (S), g, g′ ∈ int(s),

(g, g′) ∈ E(G), o ∈ I(s) (12)

2wgol ≤ ygl + zgo ≤ 1 + wgol ∀s ∈ V (S), l ∈ [N ],

g ∈ int(s), o ∈ I(s) (13)∑
g∈>(s),(g,g′)∈E(G),g′∈nodes(s) yg′l − 1 ≤ nls ∀l ∈ [N ], s ∈ V (S) (14)

nls +
∑

g′∈int(s)\{g}
∑

o′<o(wg′o′l −mg′o′l) ∀l ∈ [N ], s ∈ V (S),

≤ dgl + |>(s)|(1−mgol) o ∈ I(s), g ∈ int(s) (15)

2mgol ≤ wgol +
∑

e=(g,g′)∈E(G) xe ≤ 1 +mgol ∀s ∈ V (S), l ∈ [N ],

g ∈ int(s), o ∈ I(s) (16)

dgl, els, cls.nls ≥ 0 (17)

mgol, wgol, xe, ygl, zgo ∈ {0, 1} (18)

In a most parsimonious reconciliation scenario for each internal gene node g only one of its

children can be a new locus root (Wu et al., 2014). This condition is enforced by inequality 2.

Inequality 3 enforces that extant gene nodes mapping to the same extant species must be

assigned to different loci. Further, each gene node must be assigned to one locus and it is

enforced by Constraint 4. Constraint 5 assigns the original locus (locus 1) to the root of

the gene tree. Constraint 6 forces the child gene and its parent to map to different loci if

there exists a duplication event between them. Constraint 7 guarantees that if there is no

duplication event at gene edge (g, g′), then the locus of g and g′ must be the same.
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Constraint 8 enforces the correct calculation of loss events. In particular, it ensures that

els for locus l and species s is 1 if there exists a gene node from >(s) with locus l, while

there is no gene node in ⊥(s) with the same locus. Constraint 9 ensures the correct assign-

ment of cls variables (i.e., the number of coalescence events at speciations). Constraints 10

and 11 jointly assign the partial orders to interior nodes at each species branch. Based on

these constraints each order must be assigned to one interior node and each interior node

must be assigned to one position in the order. Constraint 12 corresponds to constraint 2

in Definition 2.1. Constraint 13 ensures the proper assignment of the wgol variables. Con-

straints 14 and 15 should be considered together (note that nls is an additional variable

that joins those two equations; it is required to properly account for extra gene lineages at

duplications). Those constraints together ensure the proper counting of the deep coalescence

events at a duplication that occurs in one of the children of node g for locus l at species node

s. Constraint 16 assures the correct assignment of mgol variables.

2.4 Designing efficiently computable models

Here we describe four additional ILP formulations (M1-M4) based on the observations de-

scribed in the introduction.

2.4.1 Leveraging duplication evidence

While the base model is highly flexible in terms of edges, where duplications can appear, this

flexibility contributes substantially to the computational complexity of M0 (see the scalability

study for more details). Therefore, in this section, we consider a strategy of restraining the

duplication placement only to those edges, where there is evidence that a duplication has

occurred.

In particular, we call a node g ∈ V (G) with children g′ and g′′ an apparent duplication

parent if clu(g′)∩ clu(g′′) is not empty, where clu(v) is the set of all leaf labels reachable from

v. That is, there exist extant species, which both child lineages of g sort out to.
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We then constraint the M0 in the way that only children of apparent duplication parents

can be locus roots. In fact, there are two options for how this constraint can be implemented,

which we call M1 and M2 that are formalized below.

M1 (restricted locations of duplications). Observe that Dg variables defined in the

previous section allow us to constrain the locations of gene duplication events easily. That

is, we define the M1 formulation by properly setting the Dg variables: Dg = 1 if and only if

g is an apparent duplication parent.

M2 (forced locations of duplications). Since apparent duplication parents provide

strong evidence of duplications, we define, in addition, a tighter model (M2). In this model,

we require that one of the children of each apparent duplication parent must be a duplication.

Note that, while this is a strong condition, it allows us to simplify the ILP formulation and

reduce the number of variables. That is, we anticipate that M2 formulation performs fastest

in practice.

More precisely, in this model, we “know”, where duplications must appear (at least we

know the parents of duplications). Therefore, Inequality (2) in M0 should become an equality

(which tightens the solution space); further, the mgol variables become redundant, so they

can be removed.

2.4.2 Leveraging the molecular-dating of coalescence events

The space of potential combinations of node orderings greatly influences the computational

complexity. Therefore, we propose a strategy to restrict the orderings to a predefined se-

quence. Such a sequence then can be inferred using the standard molecular-dating meth-

ods (Suchard et al., 2018; Sagulenko et al., 2018).

M3 (restricted order). The predefined order is incorporated into the M0 model by the

addition of constraints for a variable zgo. If node g ∈ V (G) is assigned to an order o ∈

I(M(g)), we add the following constraints zgo = 1 and zgo′ = 0 ∀o′ 6= o.

M4 (restricted order and locations of duplications). This model is designed to restrict
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the order and duplication locations. Analogically as in the M3 model we add the constraints

for the predefined order, but in this case, we extend the restricted M1 model.

2.5 Size of ILP formulations

We analyze the size of our ILP formulations in terms of their number of variables and

constraints. Let n denote the number of nodes in the gene tree and let m denote the number

of nodes in the species tree. Further, let k denote the maximum possible number of loci in

the gene tree. Note that k < n and k in the M1 and M2 models can be expected to be

significantly smaller than in the M0 model due to the modified Dg variables.

Then in the M0 and M1 models, the upper bound on the number of variables is

2km+ (2k + 1)(n+ n2) = O(k(m+ n2)),

and the number of constraints is

(3k + 1)n2 + (k + 2m+ 3)n+ 4mk + 1 = O(kn2 +m(n+ k)).

Finally, the M2 model has

2km+ (2k + 1)n+ (k + 1)n2 = O(k(m+ n2))

variables, and

(k + 1)n2 + (k2 + 2m+ 3)n+ 4mk + 1 = O(kn2 +m(n+ k))

constraints. Observe, that the M2 model has fewer variables than the other two models

(while asymptotically the same).

The M3 and M4 models are extended variants of M0 and M1 models, respectively. How-
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ever, all additional constraints are in fact variable assignments that reduce the complexity

of computation.

2.6 Searching for multiple optimal solutions

The proposed formulations can be extended to detect multiple optimal solutions through

an iterative algorithm. At each iteration of that algorithm, our models identify one more

alternative optimal solution (if such a solution exists). In particular, for a fixed model, at

the first iteration, we solve the original model and save the optimal variables x∗, y∗, and

z∗ as a part of an optimal solution. To identify a different optimal solution with the same

objective value, we add a new constraint such that the ILP model does not repeat identifying

previously detected optimal solutions. This constraint is defined as

∑
e∈E(G)

(xe − 1)x∗e +
∑

g∈V (G)

∑
l∈[N ]

(ygl − 1)y∗gl +
∑

g∈V (G)

∑
l∈[N ]

(zgo − 1)z∗go ≤ −1.

We repeat this process as long as the optimal DLC score is the same as the previous iterations.

3 Results

Our experimental evaluation consists of two parts. First, we generated simulated data to

study the scalability and sensitivity of our models. Next, we verified how developed methods

perform on a large-scale empirical dataset.

3.1 Experimental evaluation of simulated data

We present a broad simulation study that (i) compares the computational efficiency and

scalability of the developed ILP models with DP and (ii) validates the accuracy of the

constrained ILP formulations. Note that we carry out our studies under varied simulation

parameters controlling the rate of duplication/loss events as well as the rate of ILS.
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3.1.1 Experimental setup

The process for converting an instance of the DLCParsimony problem to an ILP instance

was implemented in Python 3. Then ILP instances were solved with the Gurobi optimizer

version 9.0 (Gurobi Optimization, LLC, 2020). As for DP (Wu et al., 2014), we used the

exact version of the software DLCPar without the heuristic options for a fair comparison.

Further, we set the DLCParsimony cost parameters as cD = cL = cDC = 1. We performed

the experiments on our server with 80 cores of 2.20GHz and 512 GB RAM each.

3.1.2 Simulated data

DLCParsimony instances were generated using the standard SimPhy simulator (Mallo et al.,

2015). SimPhy works by first simulating a birth-death species tree and then applying the

2-step DLCoal process by Rasmussen et al. (Rasmussen and Kellis, 2012) to simulate the

multi-locus gene trees. We use the standard simulation parameters derived from the real-

world 16 fungi dataset (Molloy and Warnow, 2019; Du et al., 2019b; Rasmussen and Kellis,

2012). In particular, we follow the parameter settings by Molloy and Warnow (Molloy and

Warnow, 2019).

To conduct a comprehensive analysis and adequately evaluate the proposed models, we

perform our experiments under various realistic levels of gene duplication and loss (GDL)

and incomplete lineage sorting (ILS). More precisely, we use three different GDL levels:

1e-10 duplication&loss events per year (low GDL rate), 2e-10 (moderate GDL rate), and

5e-10 (high GDL rate). Further, we use two different ILS levels by controlling the tree-

wide effective population size; i.e., we use the effective population sizes of 1e7 and 5e7 (that

correspond to low and moderate ILS levels, respectively, according to (Molloy and Warnow,

2019)).

Finally, we simulated DLCParsimony instances with the number of species varying from 5

to 50. That is, overall, we had 3×2×10 = 60 different parameter settings for DLCParsimony

instances. To ensure consistency, for each of the 60 parameter combinations, we generated 10
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independent DLCParsimony instances. Then we executed DP, M0, and four constrained ILP

models on each of the 600 generated problem instances. Due to a large number of instances

and the models’ advanced complexity, we constrained each execution time to 10 minutes.

Note that our simulations generated gene trees with branch lengths. From that informa-

tion M3 and M4 models inferred the order of nodes.

3.1.3 Simulation Results

We performed experiments to test computational feasibility, verify run-time and scalability,

and validate the effectiveness of constrained models. The results are shown in Table 1,

Table 2, Table 3, Figure 2, and Figure 3. Please refer to the Discussion section for a detailed

analysis of the results.

3.2 Model comparison on empirical data

We evaluated the performance of our five ILP formulations on a standard empirical dataset

with 5, 351 gene families in fungi (Butler et al., 2009; Wu et al., 2014). This dataset was

frequently used as a baseline for orthology-detection methods (Wapinski et al., 2007; Ras-

mussen and Kellis, 2012; Wu et al., 2013, 2014). Our objective was to perform a detailed

comparison across our proposed models and verify our findings from the simulation study

on real empirical data.

3.2.1 Empirical study set up

To evaluate our models, we used the unrooted gene trees from Wu et al., 2014 that were

estimated for each gene family using PhyML. Note that PhyML trees have edge lengths,

which is crucial for M3 and M4 models that fix the order of coalescence events in the DLC-

model. In particular, we use the strict molecular clock assumption, which implies that we

can directly use the PhyML edge lengths to determine coalescence times (after rooting the

gene trees).
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To root the gene trees, we first use the standard midpoint rooting. However, duplication-

loss events can largely obfuscate credible midpoint rooting (Mykowiecka and Górecki, 2016).

Addressing these shortcomings, we propose a novel rooting approach, called DL-rooting, that

is sensitive to these events as well as branch-lengths, as we detail below.

That is, we root the gene trees using the following two options:

(i) Midpoint rooting. This is the standard approach to rooting in phylogenetics, where a

longest path between two leaves is considered, and the root is placed at the middle

point of that path.

(ii) DL-rooting. An optimal root in an unrooted gene tree can be identified by minimizing

the duplication-loss cost between a rooting of the gene tree and the respective species

tree (Górecki and Tiuryn, 2007). However, this strategy usually provides multiple

edges, where an optimal root can be placed. Such edges always form a subtree in a gene

tree (Górecki et al., 2013). Here, we propose to choose a midpoint root strictly within

that optimal subtree of the gene tree (i.e., ignoring all other, sub-optimal edges).We

implemented this new rooting method in the URec software package (Górecki and

Tiuryn, 2007) (see Appendix A for more details).

We then executed ILP models M0 through M4 on both midpoint and DL rooted trees,

limiting the ILP runtime to 10 minutes per gene tree per model. We followed the same

execution setup as described in Section 3.1.1.

3.2.2 Empirical study results

As we specified a 10-minute time-limit per gene tree per model, there were 4 gene families in

total (0.07% of all gene families) for which at least one ILP formulation failed to complete

on time for either the midpoint or DL rooted gene tree. Therefore, to properly compare

our formulations, we excluded these 4 gene families from consideration. Further, there were

15 other gene families, for which the DL-rooting resulted in a multifurcated gene tree (i.e.,
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midpoint root coincided with a gene tree node). We had to additionally exclude these

15 additional gene families, since our ILP formulations are currently applicable to fully

bifurcating trees only. Table 4 then summarizes the obtained results, and we discuss this

table in detail in Section 4.4.

4 Discussion

4.1 Computational feasibility comparison

Table 1 shows each algorithm’s breakdown on how many instances it failed to complete

within 10 minutes.

We distinguished two measures: TIME for the total time of the test (including pre- and

post-processing) and the TIMEILP for the ILP part’s computation only (that is, model

creation and solving). The execution of the ILPs was terminated when TIMEILP reached

10 minutes. Therefore, we divided the failed tests into three groups. Group A consists of

tests where we did not obtain any solution after a forced termination. Group B, is where

TIMEILP reached 10 minutes, but we obtained a (potentially non-optimal) solution from

the solver. Finally, Group C is where TIMEILP is within the 10-minute limit, while TIME

is not. Note that despite the forced termination, we were able to compute optimal solutions

for the Group C instances.

As expected, we observed that the constrained ILP formulations generally performed

faster than both DP and M0, particularly for instances with more than 50 genes. Overall,

M1, M2, and M4 were able to compute the solutions for all instances in time. M0 and M3

were not able to complete within 10 minutes on 19 and 17 instances out of 600, respectively.

However, only 5 instances for M0, and 4 instances for M3 are in Group A. Further, from the

10 Group B tests for M0, 3 produced an optimal reconciliation despite the forced termination.

In summary, there were only 12 instances out of 600, where M0 did not obtain the optimal

reconciliation within 10 minutes. However, in further analysis, we consider all instances that
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fall into Groups A, B, and C as ‘failed’ for a fair comparison with DP.

While DP was faster than M0 on smaller instances, it failed to complete on significantly

more tests than M0 (33/600 versus 19/600). We observed that there were 18 instances,

where M0 was able to complete, while DP failed. At the same time, there were 4 instances,

where DP was able to complete, while M0 failed. However, for all those 4 instances M0 found

an optimal solution. In fact, 3 out of 4 of these instances are in Group C for M0, which

means that the ILP solver computations finished within 10 minutes. The last instance was

in Group B, but despite the forced termination of the ILP solver, M0 produced an optimal

reconciliation on that instance.

In summary, the M0 algorithm provided the optimal solution for all instances, where DP

succeeded, and was able to solve additional 18 instances, where DP failed.

4.2 Run-time comparison and scalability analysis

Figure 2 demonstrates M0 and M3’s scalability using examples of high-GDL and high-ILS

levels (we exclude the 10 failed tests for M0, see the last row in Table 1). In general, M0

and M3’s runtime was comparable, with the runtime of M3 being slightly faster. The speed

improvement enabled the computation of 2 additional instances within 10 minutes by M3

(see Table 1).

Figure 3 presents the runtime results for the algorithms M1, M2, and M4 on the same

set of examples. We excluded the runtime of the other three (slower) algorithms from this

figure for a better resolution. Figure 3 suggests that the runtime of M1, M2, and M4 was

generally comparable, with M2 being the fastest on average and M4 slightly improving over

M1.

Finally, the total runtime improvement of the constrained ILPs over the unconstrained

ILP (M0) can be seen from Table 2.
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4.3 Validating the results of constrained models

Given that for the vast majority of instances M0 or DP have completed, we were able

to validate the constrained models’ assumptions. That is, we compare the optimum DLC

reconciliation score from the constrained models against the overall optimum DLC score (in

the unconstrained case). See Table 3 for the results breakdown.

Interestingly, we observed that in all instances (where we know the optimum uncon-

strained cost) M3 provided exactly the same reconciliation cost as the original DLC-model.

M1 and M4 results differed from the ‘ground truth’ on 10 instances. Crucially, on these 10

instances, M1 and M4 costs were only slightly higher than the optimum reconciliation costs

(the difference was at most 2). In summary, M1 and M4 provided optimal reconciliation

costs in 98.3% of instances.

The fastest ILP, M2, provided over-estimated reconciliation costs more frequently. It was

correct in 89.5% cases, and in the other 61 it was only off by at most 8 duplication/loss/

coalescence events.

In summary, M3 proved to be highly accurate while providing the opportunity to com-

pute more instances in comparison to unrestricted M0. However, when dealing with larger

instances in practice (e.g., more than 200 genes), we recommend using the M1 or M4 for-

mulations that proved to be both very effective and efficient, almost always providing the

globally optimum reconciliation cost.

4.4 Model comparison on empirical data

Table 4 compares our five ILP formulations in detail. Primarily, it shows the total DLC cost

summed up over all gene families under consideration. A smaller DLC cost implies a more

parsimonious reconciliation. To disambiguate the unified DLC costs, we also consider each

particular type of events (duplications, losses, deep coalescence at speciations, and deep

coalescence at duplications) individually. Further, following Wu et al., 2014, we compute

the average duplication consistency score (Vilella et al., 2009) for each model. Given a
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duplication node g in a gene tree, the duplication consistency score is a fraction of species

that are common between the two child subtrees of g; this score is then averaged over all

duplication nodes in a gene tree. Note that if a tree has no duplications, then we say that

the duplication consistency score for that tree is 1. Finally, we compare the total runtime of

the ILP solver under each model.

First of all, from Table 4 we observe that DL-rooting corresponds to lower DLC costs com-

pared to the midpoint rooting. This suggests that rooting the gene trees using duplication-

loss reconciliations is a significantly better choice than the standard midpoint rooting for

orthology inference.

Next, as expected, we note that M0 performs better than other models under the overall

DLC costs. This is because M0 is the most general model. We then observe that the total

DLC cost for M3 is only insignificantly higher than for M0 under both midpoint and DL

rootings (M3 DLC cost is less than 0.02% higher than M0’s). Moreover, solving M3 was

more than twice faster than solving M0. That is, the coalescence order constraints enforced

in M3 (using the strict molecular clock assumption) proved to give us a notable practical

advantage over M0.

A comparison of the M1, M2, and M4 models to M0 mainly confirms our observations

from the simulation study. In particular, we see that M1 performs significantly better than

M2, and the difference in the DLC score between M1 and M0 was only 1.3% for midpoint

rooting and 1.2% for DL-rooting. Further, we observe no significant difference between M1

and M4, except for runtime. In particular, M4 was more than 10 times faster than M1 and

more than 70 times faster than M0 for both rooting-types.

The results for M3 and M4 suggest that constraining coalescence orders is a strongly

beneficial strategy for handling large gene families under the DLC-model. Further, combining

duplication constraints with coalescence order constraints (i.e, M4) gives the best trade-off

in accuracy versus runtime.

Regarding the duplication consistency score, we note that M1 and M4 performed best
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here. This is not surprising, since the duplication constraints implemented in M1 and M4

limit the duplication locations to only those gene nodes, where there is an overlap in species

between the childrens’ subtrees. That is, the duplication constraints align with the idea

of Vilella et al., 2009 that considers high species overlap as an indicator of a likely duplication.

Finally, we observe that computing DLC reconciliations for DL-rooted trees was notice-

ably more computationally intensive than computing reconciliations for midpoint rooted

trees for each model.

5 Conclusion

We developed a flexible ILP formulation for the popular DLC-model. In simulations we

demonstrated that this ILP generally outperforms the state-of-the-art dynamic programming

solution by Wu et al., 2014. However, despite this advancement, the ILP still cannot handle

large gene families with more than 200 genes due to the advanced computational hardness of

DLC-model. Therefore, we proposed and comprehensively tested four additional constrained

models. We showed that constraining duplication locations in the DLC-model renders a

significantly more scalable ILP without sacrificing the accuracy in a broad simulation study.

Further, while the idea of fixing an order of the coalescence events in the gene trees

did not result in a drastic runtime reduction in the simulation study, we observed that this

constraint provided a significant advantage over M0 on real empirical data.

In summary, we propose M1 for reconciliation and ortholog identification in large gene

families. Further, when molecular dating of gene trees is possible, M4 will be the most

optimal choice. In fact, in the empirical study we showed that for accurate reconciliation

with M3 and M4, it is sufficient to use the standard edge lengths provided by the popular

maximum-likelihood or Bayesian tree estimation methods. At the same time, for smaller

gene families, the unconstrained ILP will always provide the optimal solution.

Finally, our novel DL-informed rooting strategy described in Appendix A and imple-
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mented in URec, showed a great promise for orthology detection in practice.
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Population GDL
Number of Instances

M0 M3 DP
size Grp A Grp B Grp C Grp A Grp B Grp C Total
1e7 1e-10 0 0 0 0 0 0 0
1e7 2e-10 1 0 0 1 0 0 1
1e7 5e-10 3 1 2 2 2 2 8
5e7 1e-10 0 0 1 0 0 0 2
5e7 2e-10 0 1 0 0 0 1 3
5e7 5e-10 1 8 1 1 8 0 19

Table 1: Computational feasibility comparison. Number of Instances with running
time above 600 seconds out of 100 tests for each combination. The number of terminated
tests is represented as a sum of Group A (no results), Group B (approximated result), and
Group C (optimal result) instances. Note, all tests for M1, M2, and M4 models finished in
time.
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M0 M1 M2 M3 M4
Total TIMEILP 1892.806 37.183 12.019 1006.059 14.718
Total TIME 5113.063 393.970 359.783 4206.099 367.369

Table 2: Total run-time comparison. Time in seconds for all models on the example of
high-GDL and high-ILS instances, where 10 tests for which M0 computation time exceeded
10 minutes are excluded.
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Population GDL
Number of Instances

size M1 M2 M3 M4

1e7 1e-10 0/100 0/100 0/100 0/100

1e7 2e-10 0/99 1/99 0/99 0/99

1e7 5e-10 2/94 14/94 0/94 2/94

5e7 1e-10 0/99 7/99 0/99 0/99

5e7 2e-10 3/99 17/99 0/99 3/99

5e7 5e-10 5/90 22/90 0/90 5/90

Table 3: Score comparison. Number of Instances, where constrained models M1, M2, M3,
and M4 score was larger than the M0/DP score.
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Rooting Model DLC Dup Loss DC at sp DC at dup DCS ILP time

m
id
po

in
t M0 37,158 4130 6497 25966 563 0.845 5830.55

M1 37,648 4121 8341 24104 1082 0.861 1099.61
M2 38,910 4787 10471 23306 346 0.856 44.76
M3 37,163 4134 6579 25892 556 0.845 2456.43
M4 37,651 4125 8356 24097 1073 0.861 54.28

D
L-
ro
ot
ed

M0 34,942 4124 6132 24129 555 0.866 9853.51
M1 35,378 4119 7816 22435 1008 0.881 1584.17
M2 36,553 4728 9707 21762 356 0.875 81.89
M3 34,948 4126 6165 24100 555 0.865 3632.87
M4 35,382 4120 7822 22431 1009 0.881 138.77

Table 4: Model comparison on the fungi dataset. The DLC column lists the total
number of combined duplication/loss/DC events summed over all gene families. Then the 4
subsequent columns disambiguate those counts into the number of duplications, losses, DC
at speciations, and DC at duplications events, respectively. DCS column lists the average
duplication consistency scores under each model. Finally, ILP time shows the total runtime
that ILP solvers required for each model. The best results within each column are shown in
bold (for each rooting separately).
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Figure 2: Computational time comparison for M0 and M3 models. Results concern
90 not terminated high-GDL and high-ILS instances.
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Figure 3: Computational time comparison for M1, M2, and M4. Results concern 90
not terminated high-GDL and high-ILS instances.

A DL-rooting with URec

Gene tree parsimony costs, such as the duplication-loss (DL) cost (Page, 1994; Goodman

et al., 1979), were defined only for comparing rooted gene trees with rooted species trees.

However, in general, unrooted trees can be compared with rooted trees by identifying the

rootings of the unrooted tree that is minimizing any provided cost function between a pair

of rooted trees. Further, the gene tree parsimony costs satisfy the so-called plateau property,

which is sufficient for the linear time identification of all optimal rootings and rooting costs

in the unrooted gene tree. The plateau property is satisfied when all optimal rootings of the

unrooted gene tree form a subtree in this tree, and the rootings along every path toward

a leaf have monotonically increased costs (Górecki et al., 2013). Here, we describe a novel

DL-rooting strategy for weighted trees, in which the root is defined as the midpoint rooting
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of the subtree induced by the plateau edges. This approach is similar to the classic midpoint

plateau rooting strategy from (Mykowiecka and Górecki, 2016). However, in difference to

this strategy, we consider branch lengths instead of distances measured using edge counts,

allowing for a much more informed and refined root determination.

In what follows we detail our new plateau rooting strategy and demonstrate its applica-

bility.

Midpoint DL-plateau rooting

Given a (rooted) gene treeG and a species tree S, byDL(G,S) we denote the duplication-loss

cost (Page, 1994) of reconciling G and S. We now summarize how the plateau is identified in

an unrooted gene tree, whose definition is analogous the definition of a gene tree presented

in Section 2.1, with the difference that the tree has no root. Let U be an unrooted gene tree.

If e is an edge of U , by Ue, we denote the rooting of U obtained from U by placing the root

on e. Then, given a species tree S, the DL-plateau of U is defined as

argmine∈U DL(Ue, S).

In other words, the DL-plateau determines the best rooting edges by minimizing the dupli-

cation-loss cost. However, in general, the plateau may contain more than one edge, thus

such rootings may be non-unique. It follows from the theory of unrooted reconciliation

that the subtree induced by the DL-plateau form a full subtree of U (Górecki et al., 2013).

Thus, if U has branch lenghts, then the DL-plateau midpoint rooting is defined as the

midpoint rooting of the subtree induced by the DL-plateau. Note that, similarly to the

classical midpoint rooting, the DL-plateau midpoint rooting may be a non-binary tree (e.g.,

U = (a : 1, a : 1, a : 1)), however, it is highly unlikely in the case of empirical datasets.
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