
IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017 1

Efficient Local Search for Euclidean
Path-Difference Median Trees

Alexey Markin and Oliver Eulenstein

Abstract—Synthesizing large-scale phylogenetic trees is a fundamental problem in evolutionary biology. Median tree problems have
evolved as a powerful tool to reconstruct such trees. Such problems seek a median tree for a given collection of input trees under some
problem-specific tree distance. There has been an increased interest in the median tree problem for the classical path-difference
distance between trees. While this problem is NP-hard, standard local search heuristics have been described that are based on solving
a local search problem exactly. For a more effective heuristic we devise a time efficient algorithm for the local search problem that
improves on the best-known solution by a factor of n, where n is the size of the input trees. Furthermore, we introduce a novel hybrid
version of the standard local search that is exploiting our new algorithm for a more refined heuristic search. Finally, we demonstrate the
performance of our hybrid heuristic in a comparative study with other commonly used methods that synthesize species trees using
published empirical data sets.

Index Terms—Phylogenetic trees, median trees, supertrees, path-difference distance, local search.

F

1 INTRODUCTION

LARGE-scale phylogenetic trees that represent the evolu-
tionary relationships, or genealogy, among thousands of

species offer enormous promise for society’s advancements.
While such species trees are fundamental to evolutionary bi-
ology, they are also benefiting many other disciplines, such
as agronomy, biochemistry, conservation biology, epidemi-
ology, environmental sciences, genetics, genomics, medical
sciences, microbiology, and molecular biology [1], [2], [3],
[4]. However, despite these promises, synthesizing large-
scale species trees is confronting us with one of the most
difficult computational challenges in evolutionary biology
today. Here, we are focusing on synthesizing large species
trees from a given collection of typically smaller phyloge-
netic trees.

Traditionally, a species tree for a set of species is inferred
by first selecting a gene that is common to them, and then
inferring the evolutionary history for this gene, which is
called a gene tree. Gene trees describe partial evolutionary
histories of the species genomes, and therefore, it is often
assumed that gene trees have evolved along the edges of
the species tree, imitating it. However, a major shortcoming
of the traditional approach is that different gene trees for
the same set of species can describe discordant evolutionary
histories. Such discordance is frequently caused by erro-
neous gene trees, or can be the result of genes which have
evolved differently due to complex evolutionary processes
that have shaped the species genomes [5]. To confront these
challenges, median tree problems (also called supertree
problems [6]) have emerged as a powerful tool for inferring
species trees from a collection of discordant gene trees.
These problems seek a tree, called a median tree, that is mini-

• A. Markin and O. Eulenstein are with the Department of Computer
Science, Iowa State University, Ames, IA, 50011.
E-mail: {amarkin, oeulenst}@iastate.edu

A slightly different version of the manuscript is published and copyrighted by
IEEE; DOI: 10.1109/TCBB.2017.2763137

mizing the overall distance to the input trees based on some
problem-specific distance measure. Typically, measures that
have been well-established in comparative phylogenetics
are used to compute median trees [6], and one of the oldest
measures to compare trees is the path-difference distance.
However, despite the tradition and popularity of the path-
difference distance, the analysis and computation of median
trees under this measure are still in their infancy.

In this work we are studying the computation of path-
difference median trees. Recently it has been shown that
computing such median trees is an NP-hard problem for
rooted as well as unrooted input trees [7] 1. While most me-
dian tree problems used in practice are NP-hard, they have
been effectively addressed by standard local search heuris-
tics that compute exact solutions to a local search problem
thousands of times. Encouraged by these promising results
we introduce a novel hybrid heuristic that is based on local
search to compute median trees under the path-difference
distance. The heuristic is based on our Θ(kn2) time algo-
rithm (introduced here) that solves the corresponding local
search problem exactly, where n and k are the size and
number of trees in a given instance of the median tree
problem respectively. This algorithm improves by a factor
of n on the previously best-known algorithm [7]. Our new
hybrid heuristic is exploiting the speed-up of our algorithm,
allowing to compute more accurate and truly large-scale
median trees under the path-difference distance. Finally,
we demonstrate the performance of our new heuristic in
a comparative study on several published empirical data
sets, and demonstrate that it outperforms previous stan-
dard heuristics in minimizing the overall path-difference
in scalability and accuracy. Software implementing our lo-
cal search heuristic is freely available from the web-page

1. Note, the work [7] is the original published conference abstract on
which the presented journal version is largely extending and improving
upon.

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017 2

http://genome.cs.iastate.edu/ComBio/software.htm.

1.1 Related work

Median tree problems are a popular tool to synthesize large-
scale species trees from a collection of smaller trees. Given a
collection of input trees, such problems seek a tree, called
a median tree, that minimizes the sum of its distances to
each of the input trees. Since the ultimate goal of median
tree problems is to synthesize accurately species trees of
enormous scale, a large body of work has focused on the bio-
logical, mathematical, and algorithmic properties of median
tree problems adopting numerous definitions of distance
measures from comparative phylogenetics [6].

One of the oldest such measures, however, is the path-
difference distance [8], [9], [10], [11]. The path-difference
distance between two trees is defined through the Euclidean
distance between their path-length vectors. Each such vector
represents the pairwise distances between all leaves of the
corresponding tree (i.e., the number of edges on a simple
path between leaves). Steel and Penny [9] have studied
the distribution of the path-difference distance for unrooted
trees. Complementing this work, Mir and Rosello [12] com-
puted the mean value of this distance for fully resolved
unrooted trees with n leaves, and showed that this mean
value is in O(n3). Variants of the path-difference distance
are the Manhattan distance of the path-length vectors [13],
and their correlation [14].

The median tree problem for the path-difference dis-
tance has been introduced only recently [7], where its NP-
hardness was shown for rooted and unrooted input trees.
This is due to the fact that the rooted and the unrooted
version of this problem contain the maximum compatible
subset of rooted triplets problem and the quartet compati-
bility problem as special cases respectively.

Median tree problems are in general NP-hard [6], and
therefore are, in practice, approached by using local search
heuristics [15], [16], [17], [18], [19] that make truly large-
scale phylogenetic analyses feasible [15], [16]. Effective local
search heuristics have been proposed and analyzed [15],
[16], [17], [18], [19], and provided various credible species
trees [15], [16]. Such heuristics have typically two phases,
where phase I is constructing a suboptimal candidate tree,
called a seed tree, on which phase II is improving on. We
are describing these phases for an instance I with an overall
taxon set T of a median tree problem with some minimiza-
tion cost d.

Phase I is stepwise adding taxa to an initial rooted and
full binary tree until the tree contains all of the taxa in T . The
initial tree is a three-taxon tree with the minimum cost d to
instance I under all possible three-taxon trees over T , which
is found by complete enumeration. Subsequently, new trees
are built by adding one of the remaining taxa of T to each of
the branches in the currently-built tree by selecting one such
tree with the minimum cost d when compared to I as the
next built tree. The cost d of a candidate tree over a subset
T ′ of T to instance I is its cost to the trees displayed by the
input trees of I for the taxa in T ′.

Phase II is initialized with the seed tree form phase I
and finds a minimum cost tree for I under d in its (local)
neighborhood, and so on, until a local minima is reached.

At each local search step phase II is solving an instance of
a local search problem. The time complexity of this local
search problem depends on the tree edit operation that
defines the neighborhood, as well as on the computation
time of the tree distance measure that is used.

A classical and well-studied tree edit operation is the
subtree prune and regraft (SPR) operation [20] where a subtree
of the edited tree is pruned and regrafted back into the
tree at another location. The SPR neighborhood of T is the
set of all trees into which T can be transformed by one
SPR operation, and this neighborhood contains Θ(n2) trees.
Further, the best-known algorithm to compute the path-
difference distance between two trees with n leaves requires
Θ(n2) time [9].

Therefore, given an instance of k trees over n different
taxa of the SPR based local search problem, this problem
can be naı̈vely solved by complete enumeration in Θ(kn4)
time. While an Θ(kn3) time algorithm was introduced that
allowed to infer the first path-difference median tree esti-
mates for larger empirical data sets [7], its cubic runtime is
still prohibitive for synthesizing truly large-scale empirical
studies.

1.2 Our Contribution

We introduce a powerful hybrid heuristic for the path-
difference median tree problem under the classical path-
difference distance to synthesize large-scale phylogenetic
trees. The key component of this heuristic is an algorithm
that is speeding up phase II of the standard local search
heuristic by solving the SPR based local search problem in
Θ(kn2) time, where n and k is the size and number of the
input trees of the median tree problem respectively. That
way our algorithm improves on the previously best-known
solution of Θ(kn3) by a factor of n, which is possible by
exploiting novel optimal substructures of the local search
problem, leading to a more efficient dynamic programming
solution. In particular, our algorithm is providing a substan-
tial speed-up of phase II for larger instances where typically
thousands of local searches have to be computed.

The previously best-known local search algorithm relies
on the SPR-neighborhood semistructure initially introduced
in [21], which enforced certain limitations on the analysis.
In this work we show that the semistructure is not required.
Without the semistructure limitation we were able to devise
an efficient dynamic approach method for traversing the
SPR-neighborhood of a candidate median tree and calculate
its path-difference distance to the input trees for each tree
in this neighborhood. In addition, we developed a more
elaborate precomputation strategy that enables us to answer
certain sum-related queries to a path-difference matrix in
constant time, which is used as a subroutine in our method.

The hybrid heuristic is making excessive use of our
efficient computation of phase II by interleaving phase I and
phase II of the standard local search heuristic, allowing for a
much more refined local search. Initially the three-taxon tree
of phase I is computed, which is then used as the seed tree
for phase II. The tree resulting from phase II is then used
as the current-built tree for the stepwise taxon addition of
phase I. The resulting tree is again the seed tree for phase II,
and so on, until phase II is executed on a seed tree having

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017 3

all of the taxa. Thus, the hybrid heuristic is using our new
efficient local search algorithm to optimize on the current-
built tree on every step of the taxa addition of phase I.

In our experimental evaluation we present a scalability
analysis that compares our novel algorithm with the previ-
ously best-known solution on simulated phylogenetic data.
Additionally, we demonstrate the performance of our new
local search heuristic through comparative studies using
empirical data sets and evaluate the effectiveness of the
presented hybrid heuristic. In this study we compare our
hybrid heuristic with the standard two-phase heuristic and
other widely recognized supertree methods. Finally, to more
accurately relate the empirical results, we estimate path-
difference distance distributions for empirical data sets and
map distances of supertrees obtained via standard methods
under consideration on them.

2 BASICS AND PRELIMINARIES

Basic definitions. A (phylogenetic) tree T is a rooted full
binary tree. We denote its node set, edge set, leaf set, and
root, by V (T), E(T), L(T), and Rt(T) respectively. Given a
node v ∈ V (T), we denote its parent by PaT (v), its set of
children by ChT (v), its sibling by SbT (v), the subtree of T
rooted at v by T (v), and T |v is the phylogenetic tree that
is obtained by pruning T (v) from T . Note that we identify
the leaf set of a phylogenetic tree with the respective set of
leaf-labels (taxa).

Let L ⊆ L(T) and T ′ be the minimal subtree of T with
leaf set L. We define the leaf-induced subtree T [L] of T to
be the tree obtained from T ′ by successively removing each
node of degree two (except for the root) and adjoining its
two neighbors.

Additionally, for any node v ∈ V (T) we let Cv to be the
cluster of the node v, which is defined as Cv := L(T (v)) (i.e.,
a set of taxa in the subtree of T rooted at v).

Path-difference distance. Given a tree T and two leaves
u, v ∈ L(T), let du,v(T) denote the length in the number of
edges of the unique path between u and v in T . Let d(T)
be an associated vector obtained by a fixed ordering of pairs
i, j [9], e.g., d(T) = (d1,2(T), d1,3(T), . . . , dn−1,n(T)), where
n is the number of leaves. Then the path-difference distance
(PDD) between two trees G and S over the same leaf set is
defined as

d(G,S) := || d(G)− d(S)||2.

We also define PLM(T) to be the matrix of path-lengths
between each two leaves in T . That is, a matrix of size
| L(T)|×| L(T)|, where rows and columns represent leaves of
T , and PLMu,v(T) = du,v(T). Let G and S be trees over the
same leaf set, then we define ∆(G,S) := PLM(G)−PLM(S)
to be the path-difference matrix.

3 PATH-DIFFERENCE MEDIAN TREE PROBLEM

Let P be a set of trees {G1, . . . , Gk}. We define L(P) :=
∪ki=1L(Gi) to be the leaf set of P . A tree S is called a supertree
of P , if L(S) = L(P). Further, we extend the definition of the
path-difference distance to a set of trees. Note, we defined
PDD only for two trees over the same leaf set. However,
we do not want to enforce such a restriction on the set of

input trees, since typically supertrees are larger than input
trees. Therefore, in order to compare two trees S and G,
where L(G) ⊆ L(S) we use the classical minus method [22].
That is, we calculate a distance between G and the subtree
of S induced by L(G): d(S,G) = d(S[L(G)], G). We now
define PDD for an input set P and a supertree S as a sum
d(P, S) :=

∑k
i=1 d(Gi, S[L(Gi)]), which is used to establish

the following problem.

Problem 1 (PD median tree (supertree) – decision version).
Instance: a set of input trees P and a real number p;
Question: determine whether there exists a supertree S, such
that d(P, S) ≤ p.

PD median tree problem was shown to be NP-hard in
the pioneer work on this problem [7] for both rooted and
unrooted median trees. For the rooted case a reduction from
the NP-hard maximum compatible subset of rooted triplets
problem [23] was used. As for the unrooted case, a reduction
from the celebrated quartet compatibility problem [24] was
presented in [7].

4 LOCAL SEARCH FOR PD MEDIAN TREE PROB-
LEM

As stated in the introduction, we address the NP-hardness
by devising a new SPR based local search heuristic. Next,
we introduce needed definitions.

4.1 SPR-based Local search

Definition 4.1. Given a node v ∈ V (S) − {Rt(S)}, and a
node u ∈ V (S)− (V (S(v)) ∪ {Pa(v)}), SPRS(v, u) is a
tree obtained as follows:

1) Prune the subtree S(v) by (i) removing the edge
{Pa(v), v}, and (ii) removing Pa(v) by adjoining its
parent and child.

2) If u is a root of S|v, then a new root w′ is introduced,
so that u is a child of w′. Otherwise, an edge (Pa(u), u)
is subdivided by a new node w′.

3) Connect the subtree S(v) to the node w′.

In addition, we introduce the following useful notation

SPRS(v) :=
⋃
u

SPRS(v, u);

SPRS :=
⋃
v,u

SPRS(v, u).

SPRS is called an SPR-neighborhood of a tree S, and
|SPRS | = O(n2), where n = | L(S)|.

Given a set of input trees P = {G1, . . . , Gk}, the search
space in the median tree problem can be viewed as a graph
T , where nodes represent supertrees of P . There is an edge
{S1, S2} in T , if S1 can be transformed to S2 with a single
SPR operation. As was mentioned in the introduction, local
search is designed to terminate at a local minimum of T .
More formally, at each iteration the following problem is
solved
Problem 2 (PD local search).
Instance: An input set P and a supertree S;
Find: S′ = arg min

S′∈SPRS

d(P, S′).

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017 4

Next we describe an algorithm for the PD local search
problem that improves on the best-known algorithm (see
Introduction) by a factor of n.

4.2 Dynamic programming approach to local search
Let G ∈ P be a fixed input tree, and let Si be a supertree
in the i-th iteration of the local search. Throughout this
section we refer to the restricted tree Si[L(G)] as simply S.
To find structural properties for the dynamic programming
approach, we explore how the PD distance changes when a
single SPR operation is performed.

Let T = SPRS(v, w) and let ew be the edge in S where
the new parent of v will be placed as a result of the regraft-
ing operation. Note that for convenience we assume that any
phylogenetic tree has an auxiliary edge that goes into the
root node, which we denote by {∞,Rt(S)}. That way, when
w is Rt(S) (meaning that we regraft S(v) above the root) ew
is exactly that auxiliary edge. Now let UT = (u0, u1, ..., ut)
be the SPR-path in S that starts from u0 = v and ends with
the edge ew. That is, {ut−1, ut} = ew. This path is illustrated
in Figure 1a. The figure clearly shows the separation of the
tree S on disjoint subtrees along the path.

These subtrees are the focus of our further analysis. The
main observation is that the distances between leaves within
a single such subtree do not change, and we only need to
keep track of the change in-between these subtrees. Note
that in this section we talk about subtrees and corresponding
leaf-clusters in an “unrooted” sense. That is, for a node u
we say that S(u) is a lower subtree of u, and S(u) is an upper
subtree of u (basically, S(u) = S|u, but the S(u) notation
will become useful later on). The same applies to clusters
of leaves – if there is a cluster Cu, then we also have a
complementary cluster Cu = CRt(S) − Cu that correspond
to the leaf set of the upper subtree of u. The reason, why
we need this extension is that the root of S could be either
somewhere on the path or within one of the subtrees along
the path. In the latter case such a subtree is an upper subtree
of the corresponding node on the path.

Now we are ready to introduce more helpful notation.
Consider any node ui on the path, where 1 ≤ i ≤ t − 1.
Informally, we let Ri to be the leaf set of the subtree that
“comes out” of ui as suggested in Figure 1a. To formally
define Ri we consider the following two cases:
• ui−1 and ui+1 are both children of ui. In that case Ri =
Cui

.
• either ui−1 or ui+1 is a parent of ui. W.l.o.g. let ui−1 be

a child of ui, then let p be the other child of ui. In that
case Ri = Cp.

In addition, we let Rt be the leaf set of the subtree that is
connected to the SPR-path UT by the edge ew. Once again,
we have two cases to consider to formally define Rt:
• ut is the parent of ut−1. Then Rt = Cut−1

. Note that
Rt could be an empty set (i.e., when ew is the auxiliary
edge above the root node).

• otherwise, Rt = Cut
.

Observe that the subtrees depicted schematically in Fig-
ure 1 account for the whole leaf set of S combined together.

That is, L(S) = (
t⋃

i=1
Ri) ∪ Cv . Table 1 shows a path-length

difference matrix PLM(T) − PLM(S). Using this table, it

is possible to derive the difference between d(T,G) and
d(S,G). Below we explain the table by exploring how the
path between two leaves i and j changes when regrafting
the node v above w.

(i) i ∈ Cv , j ∈ Rt. In S the path between i and j
can be denoted by Ai t (u1, . . . , ut) t Bj . Note that
the partial paths Ai and Bj are not changed by the
regrafting operation. In T the path between i and j is
Ait (PaT (v), ut)tBj . The number of edges in the path
is decreased by t− 2.

(ii) i ∈ Cv , j ∈ R1. Again, we denote the path between i
and j in S by Ai t (u1) t Bj . Then the corresponding
path in T is Ai t (PaT (v), ut−1, . . . , u2) tBj . The path
length increased by t− 2.

(iii) i ∈ Cv , j ∈ Rp, where 1 ≤ p < t. We denote the path
between i and j in S by Ait(u1, . . . , up)tBj . Then the
corresponding path in T is Ait(PaT (v), ut−1, . . . , up)t
Bj . It is easy to see that the path length increased by
(t− p)− (p− 1).

(iv) i ∈ Rt, j ∈ Rp, where 1 < p < t. We denote
a path between i and j in S by Ai t (ut, . . . , up) t
Bj . Then the corresponding path in T is Ai t
(ut,PaT (v), ut−1, . . . , up) t Bj . Exactly one edge was
added to the path.

(v) i ∈ R1, j ∈ Rp, where 1 < p < t. We denote a path
between i and j in S by Ai t (u1, . . . , up) t Bj . Then
the corresponding path in T is Ai t (u2, . . . , up) t Bj .
Exactly one edge was removed from the path.

(vi) It is not difficult to check that in all other cases path-
lengths are not affected by the regrafting operation.

Let A and B be two elements from {Cv, R1, . . . , Rt}
(set of disjoint subsets), and difA,B be the corresponding
value according to Table 1. For convenience we will refer to
∆(S,G) as simply ∆.

d2(T,G)− d2(N,G)
=
∑
∀{A,B}

∑
i∈A
j∈B

(∆i,j + difA,B)2 − (∆i,j)
2

=
∑
∀{A,B} (|A||B|dif2

A,B + 2difA,B

∑
i∈A
j∈B

∆i,j).
(1)

4.2.1 Precomputation
The above equation shows that in order to efficiently
calculate d(T,G) for an arbitrary T ∈ SPRS we need to
know

∑
a∈A
b∈B

∆a,b for every pair of distinct A,B, such that

difA,B 6= 0. Since A and B represent leaf sets of some
subtrees of S it would suffice to precompute sums over
submatrices of ∆ corresponding to all possible pairs of
subtrees. Next we design an algorithm that allows us to
perform such precomputation in only O(n2) time using a
dynamic programming approach.

Algorithm idea. Assume that we somehow assigned indices
to all subtrees of S (both lower and upper subtrees). Given
an index i let Si denote the corresponding subtree of S. In
total we have 2 · (2n − 1) such subtrees. Our goal is to fill
out a matrix M of size (4n− 2)× (4n− 2), where an entry
Mi,j corresponds to a sum

∑
a∈L(Si)
b∈L(Sj)

∆a,b.

In order to simplify the analysis we identify subtrees
and corresponding indices. That is, we let M(Si, Sj) denote

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017 5

Rt

Rt-1 R2

vut ut-1 u2 u1

R1

(a) The original tree S. The edge shown in red is ew.

Rt

Rt-1 R2

v

ut ut-1 u2
R1

(b) The tree T = SPRS(v, w).

Fig. 1: The two figures schematically show the SPR operation and the way it affects the SPR-path UT . Note that one of the
subtrees, except for S(v) that is depicted in red, could contain a root. Additionally, one of these subtrees could be empty.

TABLE 1: Here 1 < p < t. Values inside the table indicate the difference in path lengths between leaves from different
subsets, i.e., for i ∈ Cv and j ∈ R1: di,j(T) = di,j(S) + t− 2.

Cv R1 . . . Rp . . . Rt

Cv 0 t− 2
−2p + 1

+t
2− t

R1 t− 2 0 −1 0

...

Rp
−2p + 1

+t
−1 0 1

...

Rt 2− t 0 1 0

Mi,j for any two subtrees Si and Sj , and M(Si) denote a
single row Mi. To fill out the matrix M we apply a dynamic
bottom-up approach. That is, for each node u ∈ V (S) we
fill out a row M(S(u)) starting from leaves up. Note that
we are not interested in M(Si, Sj) values, when both Si and
Sj are upper subtrees, since there could be no more than one
upper subtree along any SPR-path. Therefore, we explicitly
compute only rows for lower subtrees (i.e., M(S(u))) and
we do not consider upper subtree (M(S|u)) rows.

Base case. In the base case u is a leaf. Now let y be some
node in V (S). Then M(S(u), S(y)) can be equivalently
computed through the following relations:

M(S(u), S(y)) =
∑

c∈Ch(y)

M(S(u), S(c)),

when y is not a leaf;

M(S(u), S(y)) = ∆u,y

otherwise.

Having M(S(u), S(y)) computed for all y using, once
again, a bottom-up approach, we can proceed to computing
the values of M(S(u), S|y) for all y with a top-down
strategy.

M(S(u), S|y) = M(S(u), S|Pa(y)) + M(S(u), S(Sb(y))),

when y is not the root;

M(S(u), S|y) = 0

otherwise.

Step up. Now consider any internal node u ∈ V (S), whose
children we denote by c1 and c2. Then for any fixed subtree
Sj we observe the following relationship:

M(S(u), Sj) = M(S(c1), Sj) + M(S(c2), Sj)

Therefore, if we have the rows M(S(c1)), M(S(c2)) com-
puted, we can compute the row M(S(u)) in time Θ(n).

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017 6

Matrix computation time complexity. Computation of a
row M(S(u)) both in the base case and not takes Θ(n) time.
Therefore, to compute all such rows we need Θ(n2) time.

W.l.o.g. assume that the subtrees along the SPR-path UT

were indexed from 0 to t. That is, the S(v) subtree has index
0, the subtree with a leaf set R1 has index 1, and so on. Then,
having the matrix M we can compute the desired difference
d2(T,G) − d2(S,G) by using the Equation 1. Below we
expand this equation and break it into components that
correspond to different cells (or groups of cells) in Table 1.

d2(T,G)− d2(S,G) =

(i) Let A = Cv and B = Rt, then difA,B = 2 − t. By
making a substitution in the Equation 1 we get

|Cv||Rt|(2− t)2 + 2(2− t)M(Cv, Rt)

(ii) Let A = Cv and B = R1, then difA,B = t− 2.

+|Cv||R1|(t− 2)2 + 2(t− 2)M(Cv, R1)

(iii) Let A = Cv and B = Ri (1 < i < t), then difA,B =
t− 2i + 1. Summing up over all i we get

+
∑

1≤i<t

|Cv||Ri|(t− 2i + 1)2 + 2(t− 2i + 1)M(Cv, Ri)

(iv) Let A = R1 and B = Ri (1 < i < t), then difA,B = −1.
It easy to see that instead of summing up over all i we
can equivalently present this component as follows:

+ |R1|(| L(S)− Cv −R1 −Rt|)
+ 2(−1)(M(R1, R1)−M(Cv, R1)−M(R1, Rt))

(v) Let A = Rt and B = Ri (1 < i < t), then difA,B = 1.
The corresponding component can be written as fol-
lows:

+ |Rt|(| L(S)− Cv −R1 −Rt|)
+ 2(M(Rt, Rt)−M(Cv, Rt)−M(R1, Rt))

Note that all the components derived above can be
calculated in constant time, except for item (iii) that includes
a sum over the subtrees on the SPR-path, which we denote
as Q(T, t).

Q(T, t) =
∑

1<i<t

(
|Cv||Ri|(t− 2i + 1)2

+2(t− 2i + 1)M(Cv, Ri)

)
(2)

Next, we present an algorithm that traverses the SPR-
neighborhood of S in such way that it is becomes possible
to calculate the above difference in constant time for any
T ∈ SPRS .

4.2.2 Traversing the SPR-neighborhood
The time required to compute the value of Q(T, t) (see
Equation 2) depends on the length of the SPR-path UT .
Let’s consider how this value changes, when we increase
the length of the SPR-path. That is, let UT = (u0, . . . , ut) be
the original SPR-path of a fixed tree T = SPR(v, w). Now
consider another tree T ′ = SPR(v, w′) whose SPR-path is
by one node longer: UT ′ = (u0, . . . , ut, ut+1). The SPR-path
UT ′ goes one node “deeper” in the subtree St; thus, it splits
St in two subtrees, leaf sets of which we will denote by R′t
and R′t+1 according to their order on the path UT ′ .

It is easy to verify that the following equation captures
the difference between Q(T ′, t + 1) and Q(T, t):

Q(T ′, t + 1)−Q(T, t) =
∑

1<i<t

|Cv||Ri|

+ 2
∑

1<i<t

(t− 2i + 1)|Cv||Ri|

+ 2
∑

1<i<t

M(Cv, Ri)

+
(
|Cv||Rt+1|(−(t + 1) + 1)2

+ 2(−(t + 1) + 1)M(Cv, Rt+1)
)
.

Clearly, to calculate the difference Q(T ′, t + 1)−Q(T, t)
in constant time we need to maintain the following compo-
nents:

1) dQ1(T, t) =
∑

1<i<t

|Cv||Ri|

2) dQ2(T, t) =
∑

1<i<t

(t− 2i + 1)|Cv||Ri|

3) dQ3(T, t) =
∑

1<i<t

M(Cv, Ri)

Base case. In the base case we consider an SPR-path with
the smallest length, which is 3. In this case we can calculate
Q and the values dQ1,dQ2,dQ3 directly in constant time.

Increasing the SPR-path length. When we increase the
SPR-path length by 1, we need to update the values of
dQ1,dQ2,dQ3. It is easy to observe that the following
relations allow us to do that:

1) dQ1(T ′, t + 1) = dQ1(T, t) + |Cv||R′t|
2) dQ2(T ′, t+1) = dQ2(T, t)+dQ1(T, t)+(2−t)|Cv||R′t|
3) dQ3(T ′, t + 1) = dQ3(T, t) + M(Cv, R

′
t)

Sub-neighborhood traversal. We fix a node v ∈ V (S), such
that v 6= Rt(S). In order to apply the introduced above
dynamic strategy we need to traverse the SPRS(v) sub-
neighborhood so that for every new tree T = SPRS(v, w)
with a corresponding path UT = (u0, . . . , ut) that we
consider, the path should either fall under the base case,
or a shorter path (u0, . . . , ut−1) should have been already
processed. The following node iterator allows us to achieve
that goal.

1: function REGRAFTABOVENODEITERATOR(Tree S,
Pruned node v)

2: Node n := Sb(v)
3: repeat
4: for Node w in preorder-iterator(S(n)) do
5: YIELD w
6: end for
7: if n 6= Sb(v) then
8: YIELD Pa(n)
9: end if

10: n := Sb(Pa(n))
11: until n is Null
12: end function

If we apply this strategy for each v ∈ V (S) − {Rt(S)},
we obtain an algorithm that calculates the d(T,G) value for
each T ∈ SPRS in constant (O(1)) time. Since the size of
SPRS is Θ(n2) the overall time needed to calculate d(T,G)
for all T is Θ(n2) with a single precomputation step of
time complexity Θ(n2) as well. Next, we need to perform

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017 7

this procedure for each input tree G in order to obtain
the desired values of d(T,P). Therefore, the overall time
complexity of a single local search iteration is Θ(kn2).

4.3 Unrooted case

Most of the above results apply directly to the unrooted
median tree case. The only obstacle is the precomputation
algorithm, since it relies on the parent-child relationship
defined by a root. However, we can easily adapt it to work
with unrooted median trees by simply rooting them at any
internal node. Note that rooting a tree at a node does not
change its PD distance to any other tree.

5 HYBRID HEURISTIC

As it was stated in the introduction, in a classical local
search scenario there are two major phases. In the phase I
a seed tree (starting supertree) is constructed incrementally.
Typically, the process is initiated with some t′ taxa, and an
optimal tree over the chosen taxa is computed exactly. Here,
t′ is typically small, e.g., three. Next, on each iteration t new
taxa are added to the partial supertree (here t is typically
one) – an optimum among all possible ways to add t leaves
to the tree is picked. The phase II is to run the actual local
search starting with the seed tree obtained in phase I.

Clearly, the first phase could be rather slow, especially
when it is costly to compute the distance measure for a
supertree (as in our case). It can be done with a straight-
forward approach, where we try all possible positions to
insert t new taxa in our partial tree, and directly calculate
the distance after each possible insertion. Since there are
O(nt) possible ways to insert t taxa, n taxa to insert overall
and the distance calculation takes O(kn2) time – the overall
complexity is O(knt+3), which is rather infeasible on large
phylogenetic datasets even when t = 1.

Note, however, that we can improve the above complex-
ity for t = 1 by employing the same SPR-neighborhood
exploration idea as used in the core of our local search
approach presented in section 4. More formally, let S be a
partially constructed tree, and a be a taxon that we want to
insert at a “best” position in S. Let now S′ be a tree obtained
by inserting a at a random position in S. Then, clearly,
SPRS′(a) contains all the other possibilities of inserting
a. Therefore, we can apply the efficient algorithm from
section 4 to construct a starting tree for t = 1 in O(kn3)
time.

Even though some other ideas could be suggested to
accelerate the first phase, we want to emphasize that it is not
necessary to separate the two phases in the first place. That
is, the local search heuristic, which is the main optimization
engine, could be applied on every step of construction of
the starting tree (i.e., we add t new taxa randomly to a tree
and then launch a local search procedure to improve it). It
could be argued that SPR-based local search brings in more
flexibility than simply trying to add new taxa to a tree with
a fixed structure as it is done in the two-phase approach.
For estimation of PD median trees we implemented this
novel hybrid heuristic using the introduced here local search
algorithm.

6 EXPERIMENTAL EVALUATION

In this section we analyze scalability and accuracy of our
novel path-difference median tree (PDM) algorithm when
implemented in various heuristic settings, both on simu-
lated and empirical data sets.

Experiments on simulated data clearly outline time ef-
ficiency and scalability of our algorithm (as well as the
hybrid heuristic) and demonstrate its applicability to truly
large-scale phylogenetic studies. Furthermore, our empiri-
cal study demonstrates the effectiveness of the developed
hybrid heuristic as opposed to the traditional two-phase
heuristic and other popular supertree methods.

6.1 Scalability analysis

Here we report the scalability analysis of phase II that is
implementing our new PDM algorithm in comparison with
implementing the previously best-known SPR-based local
search algorithm for this phase [7].

6.1.1 Implementation and configuration
Both local search algorithms were implemented using
Python. For the experimental evaluation the PyPy python
interpreter was used under Windows 7 on an Intel Core i7
2.5GHz CPU.

To conduct our performance evaluation we designed
several experiments on simulated data by generating mul-
tiple random tree-inputs with 10 trees each, but with a
varying number of taxa (from 10 taxa up to 100 taxa with
an increase of 10 taxa).

6.1.2 Experimental setting
Here we are analyzing the runtime performance of the
local search algorithms in phase II only and in the hybrid
heuristic.

Scalability of phase II. We compare the two algorithms by
running them only in phase II on randomly generated seed
trees. That way we can compare directly the performance
of the two methods avoiding a bias introduced by a more
advanced choice of a starting tree (seed tree) like in the stan-
dard heuristic or hybrid heurisitic. An additional advantage
of such analysis is that it shows how fast we can expect a
random supertree to converge to a local minimum in the
SPR-graph.

Hybrid heuristic scalability. In this paper we put forward a
hybrid local search approach. Thus we compare performance
of the two algorithms as applied to a hybrid heuristic. In
both cases we set t = 10 (meaning that we add 10 taxa to a
candidate median tree per step).

6.1.3 Results and discussion
The results of both experiments are depicted in Figure 2.
We observe that in both cases, as expected, our new PDM
algorithm’s runtime grows considerably slower comparing
to the previously best known method. In addition, when
we compare the mean runtime of a random restart launch
and a hybrid heuristic launch, the later turns out to be
noticeably faster (even though the hybrid approach includes
a computationally-heavy step of a seed tree construction).

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017 8

Fig. 2: Phase II and the hybrid heuristic were launched 20 times on each simulated input. The solid blue and red lines show
the resulting mean runtime of the heuristics under our new Θ(kn2) local search algorithm and the previously best-known
Θ(kn3) algorithm [7] correspondingly. The dashed lines depict the mean runtime ± the sample standard deviation over the
20 runs computed at each point.

6.2 Empirical evaluation
For an empirical study we adhere to a classical evaluation
approach by comparing our path difference median tree
heuristic against standard supertree methods with different
objectives [25], [26].

6.2.1 Data sets
We processed two published baseline phylogenetic datasets,
the Marsupials dataset [27] and the Cetartiodactyla
dataset [28]. These datasets have been actively used for
experimental supertree evaluations throughout the evolu-
tionary community (see, for example, [26], [29], [30], [31]).

6.2.2 Experimental setting
Following the experimental settings presented in one of the
recent supertree papers [29], we compare our PDM algo-
rithm against the following supertree methods: the maxi-
mum representation with parsimony (MRP) heuristic [32],

the modified min-cut (MMC) algorithm [33], and the triplet
supertree heuristic [29].

MRP heuristics are addressing the NP-hard MRP prob-
lem [25], and are among the most popular supertree meth-
ods in evolutionary biology [6]. For our evaluation we use
the MRP local search heuristic implemented in PAUP* [32]
with Tree Bisection and Reconnection (TBR) branch swap-
ping [29]. The TBR edit operation is an extension of the SPR
operation, where the pruned subtree is allowed to be re-
rooted before regrafting it. The MMC algorithm computes
supertrees (that satisfy certain desirable properties) in poly-
nomial time, which makes this method especially attractive
for large-scale phylogenetic analysis [33]. The triplet su-
pertree heuristic is a local search heuristic that is addressing
the well-studied NP-hard triplet supertree problem [29]. We
are using the triplet heuristic based on SPR and TBR local
searches, called TH(SPR) and TH(TBR) respectively.

Finally, in order to justify the significance of our hybrid

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017 9

TABLE 2: Summary of the experimental evaluation. The best scores under each objective are highlighted in bold.

Data set Method PD distance Triplet-sim MAST-sim Pars. score

Marsuplial
158 input trees

272 taxa

MMC 16,670.45 51.73 % 53.4 % 3901
MRP 5,694.59 98.29 % 71.6 % 2274

TH(SPR) 5,866.27 98.99 % 70.0 % 2312
TH(TBR) 5,888.22 98.99 % 70.1 % 2317
PDM(2P) 4,462.18 84.95 % 67.4 % 2912
PDM(H) 4,380.77 85.24 % 67.0 % 2869

Cetartiodactyla
201 input trees

299 taxa

MMC 16,206.17 70.03 % 51.5 % 4929
MRP 6,991.36 96.49 % 65.2 % 2603

TH(SPR) 7,630.03 97.28 % 63.1 % 2754
TH(TBR) 7,591.13 97.28 % 63.0 % 2754
PDM(2P) 5,742.37 83.97 % 59.8 % 3654
PDM(H) 5,639.24 85.98 % 61.0 % 3394

Fig. 3: Each box corresponds to distances of 10 median trees generated by either PDM(H) or PDM(2P) methods.

heuristic we evaluate our PDM algorithm as applied sep-
arately to the hybrid heuristic PDM(H) and the traditional
two-phase heuristic PDM(2P).

For the experiments 10 supertrees were constructed by
each method (except for MMC, since it is a deterministic
algorithm and we only need a single tree produced by it) for
each dataset. Then a best score under each objective among
10 trees was used and reported in the Table 2. Also note that
for the PDM(H) heuristic we used a setting of t = 10 (i.e.,
adding 10 taxa per step to the a candidate median tree).

6.2.3 Results and Discussion
We first discuss the results from cross-validating the ob-
jective scores of the here used supertree methods. Then
we compare the supertree estimates produced by these
methods using standard tree distance measures. Finally, we
contemplate the supertree objective scores with an estimated
uniform distribution of the path distance.
Supertree method comparison. Table 2 summarizes the
results that we obtained from the conducted experiments
with our heuristics PDM(H) and PDM(2P) when compared
to the published results for MMC, MRP, TH(SPR), and
TH(TBR) [29].

As expected, all of the methods stand their ground. The
MRP method proves to be most effective according to the
parsimony objective. In addition, MRP supertrees show the
best fit over the input data in terms of our computed MAST-
similarity scores – which could be seen as an “indepen-

dent” objective in our evaluation. At the same time, both
triplet heuristics, TH(SPR) and TH(TBR), inferred the best
supertree estimates under the triplet similarity objective. As
for our methods – PDM(H) and PDM(2P) – they were able
to infer the best supertree estimates with regards to the PD
distance.

Furthermore, we observe that the hybrid approach
(PDM(H)) outperformed the traditional approach
(PDM(2P)) on both datasets. To confirm that the significance
of this result we present box diagrams with distances for all
generated PD median trees (see Figure 3)

From Figure 3 we see that a median PD distance for
the PDM(H) method is notably lower than for the PDM(2P)
method on both datasets.

Supertree comparison. From Table 2 we see how well
supertrees computed by different methods fit the input
datasets. However, it would be also valuable to see how
these supertrees are different. This comparison can give us
an idea on how diverse the methods and their correspond-
ing objectives are.

To compare the computed supertrees, we choose a
single best-fitting tree for each method (e.g., among the
10 computed supertrees for MRP we choose a one that
minimizes the parsimony objective). Next we compare the
chosen supertrees with the Robinson-Foulds (RF) metric and
the triplet similarity measure. The results are presented in
Tables 3,4, and 5.

Note that in Table 3 we normalize the RF scores by

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017 10

TABLE 3: Normalized Robinson-Foulds scores between supertree estimates constructed via different phylogenetic methods.

PDM(H) PDM(2P) MRP TH(SPR) TH(TBR) MMC

Marsupials

PDM(H) 0 0.81 0.79 0.79 0.8 0.82
PDM(2P) 0.81 0 0.8 0.79 0.8 0.81

MRP 0.79 0.8 0 0.35 0.33 0.8
TH(SPR) 0.79 0.79 0.35 0 0.24 0.79
TH(TBR) 0.8 0.8 0.33 0.24 0 0.81

MMC 0.82 0.81 0.8 0.79 0.81 0

Cetartiodactyla

PDM(H) 0 0.83 0.82 0.83 0.83 0.89
PDM(2P) 0.83 0 0.82 0.84 0.85 0.9

MRP 0.82 0.82 0 0.37 0.38 0.81
TH(SPR) 0.83 0.84 0.37 0 0.14 0.82
TH(TBR) 0.83 0.85 0.38 0.14 0 0.84

MMC 0.89 0.9 0.81 0.82 0.84 0

TABLE 4: Triplet similarity scores between supertree estimates constructed via different phylogenetic methods. Maximum
possible similarity score is 100

PDM(H) PDM(2P) MRP TH(SPR) TH(TBR) MMC

Marsupials

PDM(H) 0 73.23 76.94 80.77 80.77 49.81
PDM(2P) 73.23 0 75.23 76.66 76.66 45.51

MRP 76.94 75.23 0 90.39 90.39 50.79
TH(SPR) 80.77 76.66 90.39 0 99.98 53.32
TH(TBR) 80.77 76.66 90.4 99.98 0 53.32

MMC 49.32 45.07 50.29 52.8 52.8 0

Cetartiodactyla

PDM(H) 0 78.89 86.68 85.78 85.79 69.01
PDM(2P) 78.89 0 79.82 82.59 82.59 63.0

MRP 86.68 79.82 0 91.12 91.12 74.61
TH(SPR) 85.78 82.59 91.12 0 99.99 69.18
TH(TBR) 85.79 82.59 91.12 99.99 0 69.18

MMC 68.96 62.97 74.57 69.14 69.14 0

TABLE 5: MAST similarity scores between supertree estimates constructed via different phylogenetic methods. Maximum
possible similarity score is 1

PDM(H) PDM(2P) MRP TH(SPR) TH(TBR) MMC

Marsupials

PDM(H) 0 0.4301 0.4154 0.4081 0.4044 0.1949
PDM(2P) 0.4301 0 0.4007 0.4632 0.4632 0.1838

MRP 0.4154 0.4007 0 0.6029 0.6103 0.2243
TH(SPR) 0.4081 0.4632 0.6029 0 0.8272 0.2279
TH(TBR) 0.4044 0.4632 0.6103 0.8272 0 0.2279

MMC 0.1949 0.1838 0.2243 0.2279 0.2279 0

Cetartiodactyla

PDM(H) 0 0.3612 0.4181 0.3679 0.3712 0.1605
PDM(2P) 0.3612 0 0.3579 0.3712 0.3679 0.1438

MRP 0.4181 0.3579 0 0.5385 0.5518 0.2843
TH(SPR) 0.3679 0.3712 0.5385 0 0.9097 0.2408
TH(TBR) 0.3712 0.3679 0.5518 0.9097 0 0.2375

MMC 0.1605 0.1438 0.2843 0.2408 0.2375 0

2n − 4, which is the maximal possible RF score for two
rooted trees. The RF metric, while being the most applied
tree comparison tool in computational biology, is widely
criticized due to its unappealing distribution properties,
where most of the trees have a very large RF score to a
base tree [34]. This property, in particular, makes it hard
to interpret and compare the resulting scores. Therefore, in
addition to RF we use another widely applied comparison
measurement for rooted trees – triplet similarity – which
also has more attractive distribution properties. Finally, we

use the maximum agreement subtree (MAST) similarity for
its direct interpretability.

From all three tables we observe that MRP, TH(SPR) and
TH(TBR) trees are closely related, while MMC and PDM
trees appear to be rather different from them in terms of
RF scores, triplet similarity, and MAST similarity. Moreover,
we see that even PDM(2P) and PDM(H) trees are consid-
erably different under the chosen objectives, while they fit
comparably well the input data in terms of the PD distance.
Finally, all three tables indicate that the MMC supertree is

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017 11

Fig. 4: Histograms of the PD distance based on the generated tree samples. All methods used for the evaluation are marked
on each histogram with dotted lines.

least correlated with the supertree estimates resulting from
the other methods.
Distribution. To further assess the results of our heuristics,
we should contemplate them with the distribution of the
path-difference distance for the two datasets. However,
such distributions, even for a single input tree, remain
unknown [12]. Thus, following the approach from Steel and
Penny [9], we estimate PD distance distributions based on
sample data. For each dataset we generated two collections
with 20, 000 random supertrees using PAUP*. One collec-
tion was generated under the uniform binary tree distribu-
tion, and the other one was generated using the Markovian
branching process [35]. Then, each collection was processed
to obtain sample datasets with PD distance scores for every
generated supertree. The obtained results are outlined in
Figure 4.

The figure makes it clear that even though our heuristic
was able to obtain the best results for the two datasets,
MRP and Triplet heuristics also produce trees that are
significantly better than any of the randomly generated
trees under the PD objective. As for the MMC algorithm,
it performs much worse in terms of PD distance than
simply constructing Markovian Binary trees; and, what is
more, generally worse than drawing random trees from
the uniform distribution. In addition it is worth noting
that Markovian binary trees appear to be biased towards
the PD distance objective (i.e., the sample mean among
Markovian trees is significantly lower than a sample mean
for uniformly distributed trees on both datasets).

Figure 4 suggests that there exists a positive correlation

between the Parsimony, Triplet-similarity, and PD distance
supertree objectives. On the other hand, according to Ta-
ble 2, better PD supertrees do not necessarily score well
in terms of parsimony and triplet measures. Thus, our PD
heuristic might produce structurally new phylogenetic trees
that have not been analyzed previously (this is additionally
confirmed by the Tables 3,4, and 5).

7 CONCLUSION

There is a rising interest in computation of median trees
under one of the oldest and widely popular tree distance
metrics – the path-difference distance. While the corre-
sponding PD median tree problem is NP-hard, it was shown
that it can be successfully approached by using an SPR
based local search heuristic. In this work we presented a
substantially improved local search algorithm comparing
to the previously best known solution. In our study on
simulated phylogenetic data we showed the advantage of
our novel local search algorithm and demonstrated that it
can be applicable to truly large-scale empirical phylogenetic
datasets.

Further, the experiments on empirical data established
the significance of the developed hybrid local search heuris-
tic (that was enabled for large-scale analysis by our im-
proved algorithm) and indicated that path-difference me-
dian trees can be expected to be structurally different from
the de facto standard and widely applied MRP supertrees.

Currently, no mainstream supertree method can con-
struct edge-weighted supertrees. However, there has been

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017 12

an increased interest in such tools due to fast develop-
ing databases of time-annotated evolutionary trees (e.g.,
TimeTree [36]). The path-difference distance on the other
hand, is naturally extendable to account for edge-weights
in phylogenetic trees. Thus, the local search approach to the
weighted path-difference median tree problem might be of
great interest. This property makes the PD distance even
more appealing as a median tree objective and suggests fur-
ther investigation in its theoretical and algorithmic means.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their constructive comments that helped to improve the
quality of this work. This material is based upon work
supported by the National Science Foundation under Grant
No. 1617626.

REFERENCES

[1] S. Nik-Zainal, P. Van Loo, D. C. Wedge, L. B. Alexandrov, C. D.
Greenman, K. W. Lau, K. Raine, D. Jones, J. Marshall, M. Ra-
makrishna, A. Shlien, S. L. Cooke, J. Hinton, A. Menzies, L. A.
Stebbings, C. Leroy, M. Jia, R. Rance, L. J. Mudie, S. J. Gamble,
P. J. Stephens, S. McLaren, P. S. Tarpey, E. Papaemmanuil, H. R.
Davies, I. Varela, D. J. McBride, G. R. Bignell, K. Leung, A. P.
Butler, J. W. Teague, S. Martin, G. Jönsson, O. Mariani, S. Boyault,
P. Miron, A. Fatima, A. Langerød, S. A. J. R. Aparicio, A. Tutt, A. M.
Sieuwerts, Å. Borg, G. Thomas, A. V. Salomon, A. L. Richardson,
A.-L. Børresen-Dale, P. A. Futreal, M. R. Stratton, P. J. Campbell,
and Breast Cancer Working Group of the International Cancer
Genome Consortium, “The life history of 21 breast cancers,” Cell,
vol. 149, no. 5, pp. 994–1007, May 2012.

[2] R. A. Hufbauer, R. A. Marrs, A. K. Jackson, R. Sforza, H. P. Bais,
J. M. Vivanco, and S. E. Carney, “Population structure, ploidy
levels and allelopathy of Centaurea maculosa (spotted knapweed)
and C. diffusa (diffuse knapweed) in North America and Eurasia,”
in Proceedings of the XI International Symposium on Biological Control
of Weeds, Canberra Australia. Morgantown, WV.: USDA Forest
Service. Forest Health Technology Enterprise Team, 2003, pp. 121–
126.

[3] S. R. Harris, E. J. Cartwright, M. E. Török, M. T. Holden, N. M.
Brown, A. L. Ogilvy-Stuart, M. J. Ellington, M. A. Quail, S. D.
Bentley, J. Parkhill, and S. J. Peacock, “Whole-genome sequencing
for analysis of an outbreak of meticillin-resistant staphylococcus
aureus: a descriptive study,” Lancet Infect Dis, vol. 13, no. 2, pp.
130–6, 2013.

[4] A. P. Jackson, “A reconciliation analysis of host switching in plant-
fungal symbioses,” Evolution, vol. 58, no. 9, pp. 1909–23, 2004.

[5] R. D. Page and E. Holmes, Molecular evolution: a phylogenetic
approach. Blackwell Science, 1998.

[6] O. R. Bininda-Emonds, Ed., Phylogenetic Supertrees: Combining
Information to Reveal the Tree of Life, ser. Computational Biology.
Springer Verlag, 2004, vol. 4.

[7] A. Markin and O. Eulenstein, “Path-difference median trees,”
in Bioinformatics Research and Applications: 12th International Sym-
posium, ISBRA 2016, Minsk, Belarus, June 5-8, 2016, Proceedings,
A. Bourgeois, P. Skums, X. Wan, and A. Zelikovsky, Eds. Cham:
Springer International Publishing, 2016, pp. 211–223.

[8] J. Farris, “A successive approximations approach to character
weighting.” Systematic Zoology, vol. 18, pp. 374–385, 1969.

[9] M. A. Steel and D. Penny, “Distributions of tree comparison
metrics - some new results,” Systematic Biology, vol. 42, no. 2, pp.
126–141, 1993.

[10] J. Bluis and D. Shin, “Nodal distance algorithm: Calculating a
phylogenetic tree comparison metric,” in 3rd IEEE International
Symposium on BioInformatics and BioEngineering (BIBE 2003), 10-12
March 2003, Bethesda, MD, USA. IEEE Computer Society, 2003,
pp. 87–94.

[11] P. Puigbò, S. Garcia-Vallvé, and J. O. McInerney, “TOPD/FMTS:
a new software to compare phylogenetic trees,” Bioinformatics,
vol. 23, no. 12, pp. 1556–1558, 2007.

[12] A. Mir and F. Rosselló, “The mean value of the squared path-
difference distance for rooted phylogenetic trees,” CoRR, vol.
abs/0906.2470, 2009.

[13] W. Williams and H. Clifford, “On the Comparison of Two Classi-
fications of the Same Set of Elements,” Taxon, vol. 20, no. 4, pp.
519–522, 1971.

[14] J. B. Phipps, “Dendogram topology,” Systematic Zoology, vol. 20,
pp. 306–308, 1971.

[15] W. P. Maddison and L. L. Knowles, “Inferring phylogeny despite
incomplete lineage sorting,” Syst Biol, vol. 55, no. 1, pp. 21–30,
2006.

[16] C. Than and L. Nakhleh, “Species tree inference by minimizing
deep coalescences,” PLoS Comput Biol, vol. 5, no. 9, p. e1000501,
2009.

[17] M. S. Bansal, J. G. Burleigh, and O. Eulenstein, “Efficient genome-
scale phylogenetic analysis under the duplication-loss and deep
coalescence cost models,” BMC Bioinformatics, vol. 11 Suppl 1, p.
S42, 2010.

[18] R. Chaudhary, M. S. Bansal, A. Wehe, D. Fernández-Baca, and
O. Eulenstein, “iGTP: a software package for large-scale gene tree
parsimony analysis,” BMC Bioinformatics, vol. 11, p. 574, 2010.

[19] H. T. Lin, J. G. Burleigh, and O. Eulenstein, “Consensus properties
for the deep coalescence problem and their application for scalable
tree search,” BMC Bioinformatics, vol. 13 Suppl 10, p. S12, 2012.

[20] C. Semple and M. A. Steel, Phylogenetics. Oxford: University
Press, 2003.

[21] R. Chaudhari, G. J. Burleigh, and O. Eulenstein, “Efficient Algo-
rithms for Rapid Error Correction for Gene Tree Reconciliation
using Gene Duplications, Gene Duplication and Loss, and Deep
Coalescence,” BMC Bioinformatics, vol. 13 Suppl 10, p. S11, 2012.

[22] J. A. Cotton and M. Wilkinson, “Majority-rule supertrees,” Syst
Biol, vol. 56, no. 3, pp. 445–452, 2007.

[23] D. Bryant, “Hunting for trees in binary character sets: efficient al-
gorithms for extraction, enumeration, and optimization.” J Comput
Biol, vol. 3, no. 2, pp. 275–288, 1996.

[24] M. A. Steel, “The complexity of reconstructing trees from quali-
tative characters and subtrees,” Journal of Classification, vol. 9, pp.
91–116, 1992.

[25] S. Moran, S. Rao, and S. Snir, “Using semi-definite programming
to enhance supertree resolvability,” in Proceedings of the 5th Inter-
national Conference on Algorithms in Bioinformatics, ser. WABI’05.
Berlin, Heidelberg: Springer-Verlag, 2005, pp. 89–103.

[26] M. S. Bansal, J. G. Burleigh, O. Eulenstein, and D. Fernández-Baca,
“Robinson-foulds supertrees,” Algorithms for Molecular Biology,
vol. 5, no. 1, pp. 1–12, 2010.

[27] M. Cardillo, O. R. P. Bininda-Emonds, E. Boakes, and A. Purvis,
“A species-level phylogenetic supertree of marsupials,” Journal of
Zoology, vol. 264, pp. 11–31, 2004.

[28] S. A. Price, O. R. P. Bininda-Emonds, and J. L. Gittleman, “A
complete phylogeny of the whales, dolphins and even-toed hoofed
mammals (cetartiodactyla),” Biological Reviews, vol. 80, no. 3, pp.
445–473, 2005.

[29] H. T. Lin, J. G. Burleigh, and O. Eulenstein, “Triplet supertree
heuristics for the tree of life,” BMC Bioinformatics, vol. 10, no. Suppl
1, 2009.

[30] D. Chen, O. Eulenstein, D. Fernández-Baca, and J. Burleigh,
“Improved heuristics for minimum-flip supertree construction,”
Evolutionary Bioinformatics, vol. 2, 2006.

[31] S. Snir and S. Rao, “Quartets maxcut: A divide and conquer
quartets algorithm,” IEEE/ACM TCBB, vol. 7, no. 4, pp. 704–718,
2010.

[32] D. L. Swofford, “PAUP*. Phylogenetic analysis using parsimony
(*and other methods). Version 4. Sinauer Associates, Sunderland,
Massachusetts.” 2002.

[33] R. D. M. Page, “Modified mincut supertrees,” in Proceedings of the
Second International Workshop on Algorithms in Bioinformatics, ser.
WABI ’02. London, UK, UK: Springer-Verlag, 2002, pp. 537–552.

[34] D. Bryant and M. A. Steel, “Computing the Distribution of
a Tree Metric,” IEEE/ACM Trans. Comput. Biology Bioinform.,
vol. 6, no. 3, pp. 420–426, 2009. [Online]. Available: http:
//doi.acm.org/10.1145/1577987.1577993

[35] N. G. Bean, N. Kontoleon, and P. G. Taylor, “Markovian trees:
properties and algorithms,” Annals of Operations Research, vol. 160,
no. 1, pp. 31–50, 2007.

[36] A. D. Leaché, “The timetree of life. S. Blair Hedges and Sudhir
Kumar, editors.” Integrative and Comparative Biology, vol. 50, no. 1,
pp. 141–142, 2010.

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017 13

Alexey Markin received a B.S. degree in Com-
puter Science from Higher School of Economics
(Russia) in 2015. Since then he is a Ph.D. stu-
dent of Computer Science at Iowa State Uni-
versity, where he works with Prof. Eulenstein on
computational problems in biology with focus on
evolutionary tree inference. His research inter-
ests include graph theory, statistics, and phylo-
genetics.

Oliver Eulenstein is a professor of computer
science at Iowa State University. He earned his
doctoral degree at the University of Bonn (Ger-
many) in 1998, and held a postdoctoral position
at the University of California Davis before join-
ing the department of Computer Science at Iowa
State University in 2000. His research interest is
in Combinatorial Optimization, with special em-
phasis on Computational Biology and Bioinfor-
matics.

