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ABSTRACT

Computing median trees from gene trees using path-difference

metrics has provided several credible species tree estimates. Similar

to these metrics is the cophenetic family of metrics that originates

from a dendrogram comparison metric introduced more than 50

years ago. Despite the tradition and appeal of the cophenetic met-

rics, the problem of computing median trees under this family of

metrics has not been analyzed. Like other standard median tree

problems relevant in practice, as we show here, this problem is also

NP-hard. NP-hard median tree problems have been successfully

addressed by local search heuristics that are solving thousands of

instances of a corresponding local search problem. For the local

search problem under a cophenetic metric the best known (naïve)

algorithm has a time complexity that is typically prohibitive for

effective heuristic searches. Focusing on the Manhattan norm (Man-

hattan cophenetic metric), we describe an efficient algorithm for

this problem that improves on the naïve solution by a factor of n,
where n is the size of the input trees. We demonstrate the perfor-

mance of our local search algorithm in a comparative study using

published empirical data sets.
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Reconstruction of the evolutionary history, commonly modeled

as a phylogenetic tree, is one of the central problems in biology.

Solutions to this problem have direct applications in almost ev-

ery discipline of natural sciences including medicine, epidemiol-

ogy, biochemistry, agronomy, environmental sciences, and linguis-

tics [15, 17, 18, 28, 32]. While the paramount goal of evolutionary

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACM-BCB’17, August 20-23, 2017, Boston, MA, USA.

© 2017 ACM. 978-1-4503-4722-8/17/08. . . $15.00
DOI: http://dx.doi.org/10.1145/3107411.3107443

biology is the representation of the true phylogenetic tree for mil-

lions of existing species, today the computation of phylogenies

even for hundreds of species is a greatly challenging problem.

A well-established framework for large-scale phylogenetic tree

inference comprises the construction of a species tree, called a

supertree, from a collection of smaller trees each covering a subset

of the species in question. Such collections of trees appear naturally

either as so-called gene trees – the trees describing the evolution of

a gene shared by species [16, 27]; or as trees collected from various

sources in an attempt to unify the previously inferred knowledge

and present a single phylogenetic tree with high confidence in it [5].

Supertree construction is a challenging problem on its own, since

in practice the input trees often appear to be in disagreement, mean-

ing that they suggest discordant evolutionary histories [5]. A classic

approach for addressing this problem entails the search for a su-

pertree that fits all the input trees as best as possible. The goodness

of fit is mathematically assessed by a cost function that computes

dissimilarity between any two phylogenetic trees. The resulting

supertree search problem is called the median tree problem under

the respective cost function. The problem has been extensively

studied both from the theoretical and applications perspectives [5].

While all studied median tree problems of interest are inherently

hard, various heuristics estimating median trees, such as the classic

maximum representation with parsimony (MRP), hold enormous

value for the biological community and have become an essential

tool in practice [8, 19, 30, 38, 40].

The recent surge of interest in median trees under one of the

oldest and extensively studied metrics in comparative phylogenet-

ics, the path-difference distance [25, 26], opened a promising path

for studies of median trees under other vector-based objectives.

Perhaps, the most well-established one of them is the cophenetic

distance [9]. The cophenetic distance was established based on one

of the most popular dendrogram (which can be seen to be equiva-

lent to a bijectively labeled weighted phylogenetic tree) comparison

methods introduced by Sokal and Rohlf more than 50 years ago [35].

Similarly to the path-difference distance that uses the encod-

ing of trees as path-length vectors, the cophenetic distance uses

a vector encoding called a cophenetic vector. A cophenetic vector

contains information about a distance from the least common an-

cestor (LCA) of two taxa to the root of the tree for each pair of taxa

in a given rooted tree. A cophenetic vector equivalently encodes a

phylogenetic tree [9]; hence one can measure a distance between

two trees in the cophenetic vector space. Such distance can be for-

mulated in terms of common vector norms, such as the Manhattan

norm (also known as the Taxicab norm) and the Euclidean norm;

the corresponding tree metrics are called the Manhattan cophe-

netic distance and the Euclidean cophenetic distance respectively. In



contrast to other popular comparative metrics, such as Robinson-

Foulds, the cophenetic metrics can be similarly defined for weighted

phylogenetic trees as well, which gives it an additional perspective

advantage.

While both the cophenetic metrics and the path-difference met-

rics use vector distances, apart from that the two distance families

do not bare much similarity. Primarily, the cophenetic distance

relies on the LCA-mappings which brings it semantically closer

to the classic model-based deep coalescence cost function [23] and

the related duplications with losses cost function [6]. Indeed, in this

work we experimentally establish that the cophenetic metrics are

more closely correlated with the classic model-based deep coales-

cence cost function than the path-difference metrics. Further, in

contrast to the path-difference metrics, which are only insignifi-

cantly perturbed by the rootings of the trees under consideration,

the cophenetic metrics rely heavily on the rootings, and therefore,

are better suited for the inference of rooted phylogenies.

As most of the other median tree problems are inherently com-

plex, unsurprisingly, here we show that the cophenetic median tree

problem is NP-hard. In fact, even the commonly practiced local

search estimation approach implemented naïvely turns out to be

computationally heavy and already infeasible for an instance of

the cophenetic median tree problem involving less than a hun-

dred of species. In our work we move the feasibility bound for

the local search heuristic much farther by designing an efficient

local neighborhood search algorithm. The algorithm results from

(i) an extensive analysis of properties of the cophenetic vectors

and (ii) the adapted preprocessing part of the recently developed

algorithmic framework targeting the path-difference median tree

heuristics. With the efficient heuristic at hand we were able to

compute the first large-scale cophenetic median tree estimates and

evaluate them against supertrees constructed by other standard

supertree methods on benchmark empirical datasets.

Related work. The family of cophenetic metrics has been first

extensively studied by Cardona et.al. [9]. Their work, on one hand,

addresses the minimum and maximum values as well as distribu-

tions of the cophenetic metrics; on the other hand, compares the

cophenetic metrics to other popular comparative metrics, such as

path-difference distances and the Robinson-Foulds metric. The best

known algorithm for computing the cophenetic distance between

any two phylogenetic trees of size n requires O(n2) time.

There has been a large body of work focusing on the biological,

mathematical, and algorithmic properties of median trees adopting

various definitions of distance measures that have been effectively

used in comparative phylogenetics [5]. As most of the studied me-

dian tree problems are NP-hard, the classic median tree estimation

algorithms, including MRP, effectively employ the local search (hill-

climbing) heuristics [2, 10, 22, 24, 39], which have provided credible

estimates of large-scale species trees [24, 39]. Local search heuris-

tics typically operate in a search space of all existing supertrees

(candidate median trees) for the given collection of input trees. The

search starts with a supertree called a seed and it maintains the

candidate median tree updating it on each iteration. An iteration

encompasses a search of a tree with the minimum distance to the

input trees in the neighborhood of the current candidate tree. The

neighborhood is typically defined in terms of a tree edit operation

of choice. One of the most popular such operations is called subtree

prune and regraft (SPR), whose respective neighborhood contains

Θ(n2) trees, where n is the size of a median tree. Consequently, the

SPR-neighborhood search problem under the Manhattan cophe-

netic metric can be solved naïvely in Θ(kn4) time, where k is the

number of input trees.

The effectiveness of standard local search heuristics is typically

highly dependent on the choice of the starting tree. Traditionally,

greedy heuristics are employed to efficiently construct well-fitting

starting trees; that is, trees that consistently have a significantly

smaller distance to the input trees than a randomly chosen tree.

An extension of this approach, a hybrid heuristic, was introduced

as a method to improve the power of the traditional approach by

applying the local search heuristic in multiple stages of constructing

the starting tree itself [25].

Our contribution. The focus of this work is the development and

the applicability study of effective heuristics estimating cophenetic

median trees. The design of a heuristic is a necessary component, as

we show that the cophenetic median tree problem under any vector

norm is NP-hard.

Focusing on the Manhattan norm, we reveal that Manhattan

cophenetic median trees can be successfully estimated via the local

search approach. To make this possible, we propose an efficient

algorithm that exploits the properties of the cophenetic vectors

and enables the heuristical computation of Manhattan cophenetic

median trees for sufficiently large phylogenetic datasets relating

hundreds of species. The latter is demonstrated in our first experi-

mental study that explores the runtime of the local search heuristic.

The proposed algorithm solves the local SPR-neighborhood search

problem inO(kn3) improving on the naïve runtime by a factor of n.
Further, in our experiments, we use the developed algorithm as

a core of the state-of-the-art hybrid heuristic to evaluate cophe-

netic median trees on published empirical datasets. We evaluate the

obtained cophenetic median trees against supertrees constructed

by several other classic supertree methods. Finally, motivated by

the previous work and our results, we study the correlation of the

Manhattan cophenetic metric to the classic model-based cost func-

tions including deep coalescence, duplications, and duplications

with losses.

1 BASICS AND PRELIMINARIES

Basic definitions. Throughout this paper we adhere to the defini-

tions and notation introduced in [25]. A (phylogenetic) tree T is a

rooted binary tree, where each leaf is uniquely labeled with a taxon,

each internal node v has exactly two children nodes, denoted by

ChT (v), and each node u except for the root has a single parent

node denoted by PaT (u). In addition, we denote the node set, edge

set and leaf set ofT byV (T ), E(T ) and L(T ) respectively. We denote

the root by Rt(T ) and a sibling of each non-root node u by Sb(u).

We also set T (v) to be a subtree of T rooted at v ∈ V (T ), and T (v)
to be a tree obtained by pruning T (v) from T . Occasionally we use

the standard nested parenthesis notation to represent small trees.

We define a partial order �T on the vertex set V (T ), such that

u � v , if v is a node on the path from u to Rt(T ). Additionally, we
say u ≺ v , if u � v and u � v . The least common ancestor (LCA) of



two nodes u,v ∈ V (T ), LCAT (u,v), is the furthest from the root

node,w , such that v � w and u � w .

A set of leaves L(T (v)) is called a cluster of the node v , and is

denoted by Cv . Note that for convenience we identify the leaves in

a phylogenetic tree with the respective labels (taxa).

Let L ⊆ L(T ) and T ′ be the minimal subtree of T with leaf set L.
We define the leaf-induced subtree T [L] ofT to be the tree obtained

from T ′ by successively removing each node of degree two (except

for the root) and adjoining its two neighbors (a parent and a child).

Let P be a set of phylogenetic trees {G1, . . . ,Gk }. We extend the

definition of a leaf set to a set of trees as follows: L(P) := ∪ki=1L(Gi ).

A tree S is called a supertree of P, if L(S) = L(P). A set of trees P is

called compatible if there exist a supertree T consistent with every

tree in P, and a tree T is consistent with a treeG if T [L(G)] ≡ G up

to isomorphism of rooted semi-labeled trees [33].

Cophenetic distance. In this section we follow the definitions

presented in [9]. Given a phylogenetic tree T , let the cophenetic

value of u,v ∈ V (T ), denoted by ϕu,v (T ), be the length (measured

in the number of edges) of the path from LCAT (u,v) to Rt(T ). Ad-
ditionally, δu := ϕu,u (T ) is the depth of the node u. Given that, the

cophenetic vector of T is

ϕ(T ) = (ϕi, j (T ))1≤i≤j≤ | L(T ) | ,

for some fixed ordering of leaves in T . The cophenetic distance be-
tween two trees G and S over the same leaf set is defined as

dϕ,p (G, S) := | |ϕ(G) − ϕ(S)| |p ,

where | | · | |p denotes an Lp norm of a vector for some fixed p ∈

[1,∞).

Next, letΦ(G, S) be the cophenetic differencematrix of size | L(G)|×
| L(G)|, such that for all i, j ∈ L(G),Φi, j (G, S) = ϕi, j (G) − ϕi, j (S).
Note that L(G) should be equivalent to L(S).

We further extend the definition of cophenetic distance to a set of

trees. Given a set of trees P and a supertree of P, S , the cophenetic
distance between S and P is

dϕ,p (P, S) :=
∑
G ∈P

dϕ,p (G, S[L(G)]).

On practice the input trees are of different sizes and might be

involved this different sets of taxa. Consequently, the supertrees

are typically larger than the input trees. Note however that we

defined the cophenetic distance only for trees over the same taxon

set. Hence, in the above equation we use the minus method [13] to

account for the cophenetic distance between the supertree S and an

input tree G (that is, we prune the extra information from S when

comparing to G).

Path-induced subtrees. Let P = (u0,u1, . . . ,uk ) be a simple path

in a tree T , then i-th exit node, denoted by ei (P), for 0 < i < k is

defined as follows:

(a) If ui−1 ≺ ui ≺ ui+1, then ei := SbT (ui−1); Figure 1 depicts
an example for this case;

(b) If ui+1 ≺ ui ≺ ui−1, then ei := SbT (ui+1).

Additionally, if uk−1 ≺ uk , then ek := SbT (uk−1); otherwise, ek :=

uk . For brevity, Ei (P) := Cei (P ) (i-th exit cluster), or simply Ei when
the path P can be inferred from the context. Figure 2 illustrates the

exit nodes induced by two different types of paths.

Figure 1: An example of an exit-node and the corresponding

subtree

2 COPHENETIC MEDIAN TREE PROBLEMS

In this section we formulate and explore the basic properties of

the median tree problems defined for cophenetic distances under

different vector norms. Based on the definitions presented in the

previous section we introduce a class of cophenetic median tree

problems as follows:

Problem 2.1 (Cophenetic median tree (for an Lp norm) – de-

cision version).
Instance: A set of input trees P and a real number q;
Question: Determine whether there exists a supertree S , such that

dϕ,p (P, S) ≤ q.

2.1 Cophenetic median tree problems are
NP-hard

We prove that Problem 2.1 is NP-hard under any Lp vector norm.

The proof is based on the NP-hardness proof of the related path-

difference median tree problem [26]. To show NP-hardness we

provide a reduction from the NP-complete MaxRTC [7].

Problem2.2 (MaximumCompatible Subset ofRootedTriplets

– MaxRTC).
Instance: A set of rooted triplets R and an integer 0 ≤ c ≤ | R |;

Question: Is there a subset R′ ⊆ R, such that R′ is compatible

and | R′ | ≥ c .

Theorem 2.1. The cophenetic median tree problem under an Lp
norm is NP-hard for any p ≥ 1.

Proof. Consider a rooted triplet R and a tree S , such that L(R) ⊆
L(S). Note that if S is consistent with R, then dϕ,p (R, S[L(R)]) = 0;

otherwise, dϕ,p (R, S[L(R)]) = 4
1
p . The latter relationship can be

easily verified by, for example, computing a cophenetic distance

between two incompatible triplets ((a,b), c) and ((a, c),b).
Given that dϕ,p (R, S[L(R)]) is a constant that depends only on

whether S is consistent with R or not, we can map an instance

〈R, c〉 of the MaxRTC problem to an instance 〈R, (| R | − c)4
1
p 〉 of

the cophenetic median tree problem. It is not difficult to observe

that 〈R, (| R | − c)4
1
p 〉 is a yes-instance if and only if 〈R, c〉 is a

yes-instance of MaxRTC. �



Figure 2: (left) shows how the SPR(v,w) operation changes the tree structure, when w is an descendant of Sb(v); (right) shows

how the SPR(v,w) operation changes the tree, whenw is an ancestor of v and Sb(v).

3 LOCAL SEARCH FOR THE COPHENETIC
MEDIAN TREE PROBLEM

In this section we describe an efficient algorithm for approximating

cophenetic median trees using a standard local search approach

under the classic SPR tree edit operation.

3.1 SPR-Local search framework

Given a nodev ∈ V (S)\{Rt(S)}, and a node u ∈ V (S(v)), SPRS (v,u)

is a tree obtained by the following modifications of the tree S ′ = S(v):

(1) Ifu is a root of S ′, then a new rootw ′ is introduced, so thatu
is a child of w ′. Otherwise, an edge (Pa(u),u) is subdivided
by a new nodew ′.

(2) Connect the pruned subtree S(v) to the nodew ′.

Further, we define the following sets of trees that can be obtained

from S by performing SPR:

SPRS (v) :=
⋃
u

SPRS (v,u); SPRS :=
⋃
v,u

SPRS (v,u).

SPRS is called an SPR-neighborhood of a tree S . It is easy to see from
the definition that |SPRS | = O(n

2), where n = | L(S)|.
Given a set of input trees P = {G1, ...,Gk }, the search space in

an SPR local search problem could be viewed as a graph T , where

nodes represent all existing supertrees (candidate median trees) of

P. {S1, S2} is an edge in T , if S1 could be transformed to S2 with a

single SPR operation.

At each iteration local search heuristic finds a candidate tree S ′

in the neighborhood of a current tree S , such that S ′ minimizes the

cost function that we are interested in. In case S ≡ S ′, the local
search stops (reaches a local minimum). Otherwise, it proceeds to

the next iteration with a tree S ′. An instance (single iteration) of the

SPR-based local neighborhood search problem could be formalized

as follows:

Problem 3.1 (Copheneticmetric local neighborhood search).

Instance: An input set P and a candidate tree (supertree) S ;
Question: Find a tree S ′ = argmin

S ′ ∈SPRS

dϕ,p (P, S
′).

Naïve algorithm for the local search problems. Given two

trees S and G, one can compute dϕ,p (S,G) in O(n2) time for any

p. Therefore, direct computation of the ϕp (P, S
′) score for each

S ′ ∈ SPRS would takeO(n4k) time, where n = | L(P)| and k = | P |.

Next, we show how to improve on this complexity under p = 1 (the

Manhattan distance).

To fix the set up, let G ∈ P be a fixed input tree, and let Si be a
supertree in the i-th iteration of the local search. Throughout the

next section we refer to the restricted tree Si [L(G)] as simply S.

3.2 Local search environment for cophenetic
median trees

To design a faster algorithm for the cophenetic local search problem

we examine the structure of the SPR-environment of a candidate

median tree. We are interested in the structure of the cophenetic

difference matrix Φ(T , S) for some T = SPRS (v,w). LetUT = (v =
u0, . . . ,ut = w) be the path between v and w in T , and let uh be

the node closest to the root of S on that path (i.e., uh � ui for all
0 ≤ i ≤ t , i � h). Below we show the structure of the matrix Φ(S,T )
by considering a few major cases that provably cover the whole

matrix.

(i) Sb(v) ≺ w , i.e., the pathUT is a part of the path from v to

Rt(S). This case is depicted in Figure 2 (right-hand side).

(a) ∀i ∈ Cv, j ∈ Ep : ϕi, j (T ) = ϕi, j (S)−(t−p) for 1 ≤ p ≤

t − 1. This case characterizes the change in depths of

LCAs between leaves inCv and leaves in exit clusters

of the path UT . Note that while LCAS (i, j) = up , after
regrafting we have LCAT (i, j) = PaT (w) = PaT (v).

(b) ∀i ∈ Cw , j ∈ Cw \E1 : ϕi, j (T ) = ϕi, j (S)+1. This change
is due to the fact that we add a new node, PaT (w), on

the path from the nodes up (for 2 ≤ p ≤ t ) to the root.

Note, however, that the depth of the node e1 remains

unchanged.

(ii) SbS (v) � w . This case is similar to the one considered

above and it is depicted on the left-hand side of Figure 2.



(a) ∀i ∈ Cv, j ∈ Ep : ϕi, j (T ) = ϕi, j (S) + (p − 2) for 2 ≤

p ≤ t . Due to the observation that LCAS (i, j) = u1,
while after regrafting LCAT (i, j) = PaT (ep ).

(b) ∀i ∈ Cu2
, j ∈ Cu2

\Et : ϕi, j (T ) = ϕi, j (S) − 1. We re-

moved the node, PaS (v), from the paths from the

nodes up (for 2 ≤ p ≤ t − 1) to the root. However, the

depth of the node et = w remains unchanged.

(iii) Sb(v) ⊀ w, Sb(v) � w . That is, uh is some node on the

path, which is neitherw nor v .
(a) ∀i ∈ E1, j ∈ E1 : ϕi, j (T ) = ϕi, j (S) − 1. Node e1 be-

comes one edge closer to the root.

(b) ∀i ∈ Cw , j ∈ Cw : ϕi, j (T ) = ϕi, j (S) + 1. Node w be-

comes one edge further from the root.

(c) ∀i ∈ Cv, j ∈ Ep : ϕi, j (T ) = ϕi, j (S) + (p − h) for 1 ≤

p ≤ t ,p � h. For p < h, we have LCAS (i, j) = up and

LCAT (i, j) = uh ; as forp > h, we have LCAS (i, j) = uh
and LCAT (i, j) = PaT (ep ).

(iv) For all three cases outlined above: ∀i, j ∈ Cv : ϕi, j (T ) =
ϕi, j (S)−δv (S)+δw (S)+1. Since we regraft the subtree S(v)
abovew , depths of all nodes inside this subtree increase by

(−δv (S) + δw (S) + 1); hence, the change in the cophenetic

vector.

(v) Observe that for any other choice of i and j , the correspond-
ing cophenetic value, ϕi, j , is not affected.

Overall, the following clusters are involved in the changes in the

cophenetic vector of S : i is one of the clusters inC i = {Cv ,Cw ,Cu2 ,E1},
and j appears in C j = {Cv ,Cw ,Cu2 ,E1, . . . ,Et }. The key observa-

tion is that regardless of the form ofUT , there are only O(t) pairs
of clusters (Ci ,Cj ) ∈ C i ×C j such that the respective cophenetic

values are altered.

Let d(Ci ,Cj ) be the value, such that ∀(i, j) ∈ Ci ×Cj , ϕi, j (T ) =
ϕi, j (S) + d(Ci ,Cj ) according to the cases outlined above. For exam-

ple, d(Cv ,Cv ) = −δv (S) + δw (S) + 1. Given that, Equation 1 shows

how the cophenetic distance ϕ(S,G) is effected by an SPR opera-

tion. The equation has been adopted from the work on Manhattan

path-difference median trees [26]. For technical reasons we define

Δi, j (C1,C2) :=

{
0, if i > j and (j, i) ∈ C1 ×C2

Φi, j (S,G), otherwise.

In most cases the fixed clustersC1 andC2 are clear from the context,

and hence we use the shorthand notation, d and Δi, j for d(C1,C2)

and Δi, j (C1,C2) respectively. Below we provide the final equation.

dϕ,1(T ,G) − dϕ,1(S,G) =
∑

C1∈C i

C2∈C j

∑
i ∈C1
j ∈C2

(
|Δi, j + d | − |Δi, j |

)

=
∑

C1∈C i

C2∈C j

������	
d · #{(i ∈ C1, j ∈ C2)|Δi, j ≥ −d)}
−d · #{(i ∈ C1, j ∈ C2)|Δi, j < −d)}

+2
∑

i ∈C1, j ∈C2:
−d≤Δi, j<0

Δi, j − 2
∑

i ∈C1, j ∈C2:
0≤Δi, j<−d

Δi, j


������
.

(1)

3.3 Efficient algorithm

Tomake use of the above analysis we adopt the data structures devel-

oped in the work on Manhattan path-difference median trees [26].

In this section we briefly describe the resulting preprocessing idea.

Let C (S) be a set of all clusters in a tree S . For L1, L2 ∈ C (S), we
define Σ≥(L1, L2) to be a vector indexed from −n to n, such that

Σ≥(L1, L2)[x] = Σ≥(L2, L1)[x] =
∑

i ∈L1, j ∈L2:
i≤j, Δi, j ≥x

Δi, j (Li ,Lj )

Similarly, we define a vector #≥(L1, L2) indexed from −n to n, such
that

#≥(L1, L2)[x] = #{(i ∈ L1, j ∈ L2 − L1)|i ≤ j,Δi, j (L1,L2) ≥ x}

It is not difficult to check that given such vectors it is possible

to compute dϕ,1(T ,G) − dϕ,1(S,G) for an arbitrary T ∈ SPRS in

O(n) time using Equation 1. For example, let’s consider some T =
SPRS (v,w), such that the corresponding pathUT is a part of a path

from v to the root (i.e., v ≺ w). That means that if we choose

C1 = Cv and C2 = E1, then d(C1,C2) = −t + 1 according to the

analysis presented in Section 3.2, where t ≥ 2 is the length of UT
in edges. We can now use the vectors defined above to find a part

of the sum in Equation 1 that corresponds to the chosen clusters

C1 and C2. That is, we observe the following relations:

• #{(i ∈ C1, j ∈ C2)|Δi, j ≥ t − 1} is simply #≥(C1,C2)[t − 1].

• #{(i ∈ C1, j ∈ C2)|Δi, j < t − 1} =
(
#≥(C1,C2)[−n] −

#≥(C1,C2)]t − 1]
)
.

•
∑

i ∈C1, j ∈C2:
0≤Δi, j<t−1

Δi, j = Σ≥(C1,C2)[0] − Σ≥(C1,C2)[t − 1].

Complexity analysis. An algorithm for computing vectors Σ≥

and #≥ efficiently was presented in [26]. Although there the vec-

tors were defined in a slightly different way, the algorithm can be

adopted for our needs (we omit the technical details for brevity).

The time complexity for computing these vectors is O(n3) for
a fixed input tree G. Having these vectors computed we can cal-

culate the value dϕ,1(T ,G) in O(n) for all T ∈ SPRS . Given that

|SPRS | = O(n
2), and the number of input trees is k , the overall time

complexity is O(kn3).

4 EXPERIMENTAL EVALUATION

Here we evaluate the local search approach enabled by the algo-

rithm described in the previous section as applied to the Manhattan

cophenetic median tree problem. In our first study we evaluate the

local search approach in terms of time that it takes to converge to

a local minimum on artificially constructed datasets of different

sizes. In the second study we apply the state-of-the-art local search

heuristic to sufficiently large empirical datasets and compare ob-

tained cophenetic median trees to supertrees obtained by using

other popular supertree and median tree methods.

4.1 Scalability analysis

We compare the runtime of pure local search strategies (when a

starting tree is chosen randomly) for the estimation of Manhattan

median trees using the naïve and improved algorithms described

in Sections 3.1 and 3.3 respectively.

Data sets. We estimate the runtime for randomly generated sets

of input trees. We generated 12 random input sets with 10 trees

in each over the number of taxa varying from 10 in the smallest

dataset to 120 in the largest one, with a step of 10.
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Figure 3: The growth of runtime until convergence with a

gradual increase of the number of taxa in input datasets.

Mean runtimes among five trials are presented.

Experimental setting. For each of the generated datasets we ran

both the naïve and improved heuristics five times each. In Figure 3

we report the mean runtimes over the five trials.

Results. Figure 3 depicts that the runtime for the improved local

search algorithm grows substantially slower than the runtime under

the naïve algorithm. Without the improved algorithm the taxa limit

for local search heuristic is reached already for 70 taxa. However,

the presented here analysis and the resulting algorithm allows us to

estimate cophenetic median trees for much larger instances, which

we demonstrate in our second study.

4.2 Empirical study

In this sectionwe compare heuristically estimatedManhattan cophe-

netic median trees to path-difference median trees and other su-

pertrees constructed by using several highly recognized supertree

methods. The study is conducted over two standard empirical

datasets. The goal is to evaluate the applicability of the local search

approach to the cophenetic median tree problem and to find rela-

tions between various supertree and median tree methods.

Data sets. Following the original work on path-difference median

trees, we evaluate our copheneticmedian tree heuristic on published

baseline datasets [25, 26]

(i) Cetartiodactyla: contains 201 trees over 299 taxa overall [30];

(ii) Marsupials: contains 158 trees over 272 taxa overall [8].

These datasets are considerably large and serve as benchmarks for

phylogenetic studies (see [3, 11, 21, 34]).

Methods. In order to obtain credible estimates for Manhattan

cophenetic median trees (MCMT) we used the hybrid heuristic

framework that was successfully applied to path-difference median

trees outperforming other standard local search paradigms [26].

For comparison we use two path-difference median tree heuristics –

one for Manhattan median trees (MMT) and another for Euclidean

median trees (EMT).

Additionally, following the preceding studies [21, 25, 26], we in-

clude the following methods in our study:modified min-cut (MMC)

algorithm that computes supertrees in polynomial time andwas sug-

gested for use on large-scale datasets [29]; two triplet median tree

heuristics (TH) that approach the corresponding triplet median tree

problem using SPR and TBR tree edit operations respectively [21].

Note that TBR (stands for tree bisection and reconnection) is an ex-

tension of the SPR operation, where the pruned subtree is allowed

to be re-rooted before regrafting it. Finally, we include the classic

maximum parsimony with representation heuristic (MRP). MRP was

recognized as the most applied supertree method among practi-

tioners [5]. Here we use the implementation of MRP heuristic in

the popular software package, PAUP* [38], under the TBR branch

swapping [21].

Experimental setting. To compare the methods under consid-

eration we used the results of their execution over both datasets

(each method was executed 10 times, except for MMC, which is a

deterministic method). We further evaluated each of the generated

supertrees with the respective input dataset using 6 relevant ob-

jectives: the Manhattan cophenetic distance, the Manhattan and

Euclidean path-difference distances, triplet similarity (the objective

function for triplet heuristics), the average maximum agreement

subtree (MAST) similarity, and the parsimony score.

The best scores among the ten trials under each objective are

presented in Table 1

Results. From Table 1 we observe that our objective function, the

Manhattan cophenetic distance, significantly differs from others in

terms of the distribution of scores across the methods. That is, as ex-

pected, the here introduced method, MCMT, performs best in terms

of this objective. We also observe that the MRP and TH heuristics

produce trees that are better in terms of cophenetic distance than

the trees produced by path-difference median tree methods. On

the other hand, MCMT produces trees that score better in terms

of path-difference objectives than trees generated by MRP and TH

heuristics. That is, we observe a rather asymmetric behavior for

the three vector-based objectives and their respective median tree

estimates (MMT, EMT, and MCMT).

4.3 Correlation with other cost functions

Cardona et.al. studied correlations between the cophenetic metrics

and other popular tree comparison metrics including the path-

difference distance and the classic Robinson-Foulds metric (RF) [9].

They have demonstrated that the Manhattan cophenetic distance

(i) does not bare strong correlation with the Manhattan and Eu-

clidean path-difference distances (Spearman correlation coefficient

of ≈ 0.45), and (ii) has almost no significant correlation with the

Robinson-Foulds distance (Spearman correlation coefficient of ap-

proximately ≈ −0.0008). As was mentioned in the introduction,

the cophenetic distance is dependent on the LCA mappings, and

therefore, can be expected to be more closely related to the cost

functions originating from the gene tree parsimony (GTP) problem

than the path-difference distance or RF. We consider the following

GTP related cost functions: gene duplications (GD), deep coales-

cence (DC), and duplications with losses (DL). In fact, based on the

formal definitions, the cophenetic distance is most closely related

to the deep coalescence cost function, as both take into account the

path-lengths between LCA mappings. In this section we test our

hypothesis that the two cost functions are indeed correlated.

Experimental setting. In order to assess correlations between

different cost function we follow the Cardona et.al. setting. That is,



Data set Method L1 cophen. L1 PDD L2 PDD Triplet-sim MAST Pars. score

Marsup

158 input trees

272 taxa

MMC 1,564,728 1,681,015 16,670.45 51.73 % 53.4 % 3901

MRP 122,459 515,257 5,694.59 98.29 % 71.6 % 2274

TH(SPR) 143,398 515,906 5,866.27 98.99 % 70.3 % 2312

TH(TBR) 143,501 517,274 5,888.22 98.99 % 70.4 % 2317

EMT 260,787 327,379 4,380.77 85.24 % 67.0 % 2869

MMT 286,357 323,909 5,063.34 54.68 % 57.6 % 3817

MCMT 60,737 372,719 4,974.58 90.90 % 64.8 % 3036

Cetartio

201 input trees

299 taxa

MMC 1,004,359 918,639 16,206.17 70.03 % 51.5 % 4929

MRP 186,582 365,870 6,991.36 96.49 % 65.2 % 2603

TH(SPR) 168,620 403,233 7,630.03 97.28 % 63.1 % 2754

TH(TBR) 168,497 401,327 7,591.13 97.28 % 63.0 % 2754

EMT 209,680 258,836 5,639.24 85.98 % 61.0 % 3394

MMT 225,705 258,424 6,142.98 66.28 % 54.2 % 4218

MCMT 74,135 288,411 6,620.88 87.80 % 58.1 % 3895

Table 1: Empricial evaluation of supertree methods over two published phylogenetic datasets. The best scores under each

objective function are shown in bold.
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Figure 4: The figures depict the cophenetic distances between pairs of trees in comparison to the respective DC cost (left-hand

side) and the GD cost (right-hand side).

we generated 1000 random pairs of bifurcating phylogenetic trees

with 100 of labeled leaves each. The trees were drawn from the uni-

form distribution. Next, for each pair of trees, (T1,T2), we computed

the Manhattan cophenetic distance as well as duplications, deep

coalescence, and duplications with losses costs. Observe that the

GD, DC, and DL cost functions are not symmetric. Thus, in order

to compare it to the symmetric cophenetic distance, we computed

the cost sums C(T1,T2) +C(T2,T1), where C ∈ {GD,DC,DL}.
Based on the obtained scores for a thousand of tree pairs we

computed Spearman correlation coefficients for each pair of cost

functions (see Table 2). The data was also plotted on Figure 4 to

emphasize the correlation patterns.

DC sum GD sum DL sum

L1 cophenetic 0.602 0.023 0.544

DC sum - 0.331 0.975

GD sum - - 0.517

Table 2: Spearman correlation coefficients for the four LCA-

based cost functions.

Results. Observe from Table 2 that the two most correlated cost

functions are deep coalescence and duplications with losses. This

was highly expected, since the DL cost function can be represented

as a linear combination of DC and GD, where the DC cost is much



more significant than the GD cost [41]. Further, in justification to

our hypothesis, we observe a significant correlation between the

Manhattan cophenetic distance and DC. Observe that the Spear-

man correlation for these two cost functions is higher than the

respective correlation coefficient between the L1 cophenetic dis-
tance and the path-difference distances. The observed correlation

is further illustrated in Figure 4 (left-hand side) as opposed to the

low correlation plot for the GD cost function (on the right-hand

side).

5 CONCLUSION AND OUTLOOK

The problem of discordance in phylogenetic trees has been ad-

dressed by the means of the median tree approach for over 20

years [4, 5, 31]. Median tree methods employ various objective cost

functions, which can be classified into mathematically informed

costs, and biologically informed costs. Biological costs are based on

evolutionary processes causing discordance between two trees (e.g.,

deep coalescences, gene duplications, and gene duplications with

losses [14]), which are typically used when gene trees are compared

with species trees [14]. In contrast, independent of any evolutionary

causes, mathematical costs between two trees are measuring the

amount of elementary evolutionary information that is common

(or different) in these trees, and are thought to be applicable as a

tool of error-correction and formal maximization of common in-

formation among the input trees [5]. Another distinction between

mathematical and biological costs is that the former typically sat-

isfy the properties of a metric [36], while the latter once are not

symmetric and do not satisfy the triangle inequality [14]. Despite

the differences between mathematical and biological costs, in the

median tree setting the Manhattan cophenetic metric, a mathemati-

cal cost, and the deep coalescence cost function, a classic biological

cost, showed to be strongly correlated in our experiments. This

suggests that the cophenetic median tree methods may be used as a

universal solution to the generalized supertree problem. Note also

that as a metric, the cophenetic model provides valuable mathe-

matical properties, which are not met by most of the biologically

informed cost functions. The fact that the cophenetic metrics are

not tied to a biological model also gives an advantage, as they can be

naturally generalized for the comparison of weighted phylogenetic

trees. Given the increasing interest in the time-annotated median

trees [20], this property provides great applicability perspectives

for the weighted cophenetic median trees.

In this work we presented a new method for median tree esti-

mation based on the Manhattan cophenetic metric, and studied the

correlations of this metric with other classic cost functions that

have been applied and recognized in the context of median trees.

We devised an effective heuristic that enabled the computation of

the first Manhattan cophenetic median tree estimates on sufficiently

large phylogenetic datasets, which became only possible due to the

efficient algorithm for the local neighborhood search that we put

forward in this work. This algorithmic advancement allowed us

to perform a first applicability study that evaluates the Manhattan

cophenetic median tree heuristic against other supertree methods

on benchmark datasets. The results of this study motivates much

broader future investigations into the significance of cophenetic

median trees from the evolutionary perspective.

Furthermore, the special properties of the cophenetic metrics,

such as dependence on the LCAs, also indicate that it is possible

to devise an efficient local search heuristic under the TBR edit

operation [1, 12, 37], which will be feasible on large-scale datasets

and complement our current work.
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