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Abstract.—The use of next‑generation sequencing technology has enabled phylogenetic studies with hundreds of thou‑
sands of taxa. Such large‑scale phylogenies have become a critical component in genomic epidemiology in pathogens
such as SARS‑CoV‑2 and influenza A virus. However, detailed phenotypic characterization of pathogens or generating a
computationally tractable dataset for detailed phylogenetic analyses requires objective subsampling of taxa. To address
this need, we propose parnas, an objective and flexible algorithm to sample and select taxa that best represent observed
diversity by solving a generalized k‑medoids problem on a phylogenetic tree. parnas solves this problem efficiently and ex‑
actly by novel optimizations and adapting algorithms from operations research. For more nuanced selections, taxa can be
weighted with metadata or genetic sequence parameters, and the pool of potential representatives can be user‑constrained.
Motivated by influenza A virus genomic surveillance and vaccine design, parnas can be applied to identify representative
taxa that optimally cover the diversity in a phylogeny within a specified distance radius. We demonstrated that parnas is
more efficient and flexible than existing approaches. To demonstrate its utility, we applied parnas to 1) quantify SARS‑
CoV‑2 genetic diversity over time, 2) select representative influenza A virus in swine genes derived from over 5 years of
genomic surveillance data, and 3) identify gaps in H3N2 human influenza A virus vaccine coverage. We suggest that our
method, through the objective selection of representatives in a phylogeny, provides criteria for quantifying genetic diver‑
sity that has application in the the rational design of multivalent vaccines and genomic epidemiology. PARNAS is available
at https://github.com/flu‑crew/parnas. [Diversity; epidemiology; influenza A virus; phylogeny; representative sampling;
SARS‑CoV‑2; vaccines.]

Next‑generation sequencing technologies are routinely
applied to generate thousands to millions of genomes.
From the beginning of the COVID‑19 pandemic to
present, more than 11 million SARS‑CoV‑2 viruses have
been sequenced (Turakhia et al. 2021). Genomic epi‑
demiology and phylogenetic analysis are essential tools
to navigate this landscape of genetic data (Hill et al.
2021). However, phylogenetic trees are often insufficient
to make informed intervention decisions, especially in
public health. For example, it is difficult to select a few
representative virus strains from within a phylogeny to
include in a polyvalent vaccine, and selecting unique
pathogen strains to represent variable genes or genomes
for detailed in vivo studies on transmission and pathol‑
ogy requires objective criteria that are reproducible. As
these assays cannot be performed on the same scale as
sequencing, objective subsampling strategies are neces‑
sary. Subsampling techniques must satisfy three prop‑
erties: 1) selected taxa should capture observed genetic
diversity; 2) selected taxa should be representative of re‑
spective diversity groups; and 3) the method needs to
be flexible to allow preferential weighting of taxa and
be open to specific constraints, such as a desire to target
spatial or temporal metadata due to limited availability
of some strains for characterization.

The above “representative sampling” problem can be
formulated as the 𝑘‑medoids problem on a phylogenetic

tree. That is, the goal is to select 𝑘 representative
taxa, such that the overall distance from all taxa to
the respective closest representative is minimized. This
formulation simultaneously partitions the taxa into 𝑘
(phylo)genetic clusters and chooses best representa‑
tives within the clusters, thus satisfying properties (1)
and (2) from above. In phylogenetics, this problem
was originally considered in the context of biodiver‑
sity (Faith 1994) and later as a means to improve phy‑
logenetic inference (Matsen et al. 2013). Independently,
a related problem, called 𝑝‑medians, was studied in the
context of optimal facility location in Operations Re‑
search on general trees (Kariv, Hakimi 1979; Tamir
1996; Benkoczi, Bhattacharya 2005). To date, the best
known algorithm to solve the 𝑝‑medians and, conse‑
quently, the 𝑘‑medoids problem on trees was devel‑
oped by Tamir (1996). Here, building upon Tamir’s al‑
gorithm, we designed a fast in‑practice algorithm for
the 𝑘‑medoids problem, and implemented our algo‑
rithm in the software package parnas (https://github.
com/flu‑crew/parnas). We also developed parnas to
solve a more general problem and satisfy property 3)
from above by allowing taxa to be weighted by meta‑
data so that those with larger weights are better rep‑
resented within the selection process. Additionally, in
parnas, users can constrain the pool of potential rep‑
resentatives in multiple ways and indicate previously

1

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/advance-article/doi/10.1093/sysbio/syad028/7174231 by D

igiTop U
SD

A's D
igital D

esktop Library user on 08 O
ctober 2023

https://doi.org/10.1093/sysbio/syad028
https://orcid.org/0000-0003-3280-9050
mailto:alexey.markin@usda.gov.
https://github.com/flu-crew/parnas
https://github.com/flu-crew/parnas
https://github.com/flu-crew/parnas


2 SYSTEMATIC BIOLOGY

selected/employed representative taxa, so that new rep‑
resentatives will optimally complement prior selections.

In virology, the diversity of viruses continually
changes through evolutionary processes such as muta‑
tion and selection, and it is necessary to monitor and
identify possible emerging threats. parnas can be ap‑
plied to identify genetically unique pathogens by allow‑
ing users to specify a “coverage radius,” such that each
potential representative covers all diversity within the
specified radius (evolutionary distance) on the phylo‑
genetic tree. Thus, it is possible to choose 𝑘 represen‑
tatives so that the total amount of covered diversity
is maximized, or choose the minimum number of rep‑
resentatives that cover all the diversity on a tree. The
coverage problem also allows the optimal elimination
of redundancy from a tree if a small radius is speci‑
fied. Though linking genetic diversity to phenotype is
challenging (Zeller et al. 2021), distance thresholds have
been applied to identify discrete genetic clades (Han
et al. 2019) that are correlated with antigenic differ‑
ences (Anderson et al. 2020). Therefore, finding opti‑
mal genetic coverage on a phylogenetic tree can identify
groups of viruses that may be phenotypically novel and
drifted from existing viruses.

In this study, we developed an algorithm that solves
the 𝑘‑medoids problem on a phylogenetic tree. We
compared the runtime of parnas to prior approaches
for the (unweighted) 𝑘‑medoids problem on a phylo‑
genetic tree proposed by Matsen et al. (2013) as the
ADCL algorithms (ADCL‑PAM and ADCL‑full). De‑
spite ADCL‑PAM being an inexact heuristic, we ob‑
served parnas to be more scalable than both ADCL‑
PAM and the exact ADCL‑full algorithm. We demon‑
strated that novel optimizations introduced in parnas
reduce the dynamic programming table size and re‑
sulted in 85% performance improvements in terms of
runtime and RAM. Further, we demonstrated that par‑
nas is faster than Treemmer (Menardo et al. 2018), a pop‑
ular tool for eliminating redundancy on a phylogeny,
while preserving diversity. We showed that Treem‑
mer taxon selections can be 40–50% less representative
than the optimal selections by parnas. We applied par‑
nas to an empirical influenza A virus (IAV) in swine
dataset derived from the national USDA IAV in swine
surveillance system (Anderson et al. 2013). Our goal
was to determine a minimum number of representa‑
tives that maximized genetic coverage, and assess the
duration that the representatives covered a significant
amount of diversity over time. Similarly, we analyzed
human H3N2 IAV diversity and incorporated pheno‑
typic prediction models, that is, antigenic advance mod‑
els (Neher et al. 2016; Hadfield et al. 2018), to identify
gaps in human seasonal H3N2 vaccine coverage. Fi‑
nally, we applied the parnas coverage algorithm to quan‑
tify the genetic diversity of SARS‑CoV‑2 genomes and
demonstrated how the appearance of novel SARS‑CoV‑
2 clades led to a decrease in observed virus diversity
in a process similar to a “selective sweep” (Boyle et al.
2022).

MATERIALS AND METHODS

Definitions
A (phylogenetic) tree over a taxon set 𝐿 is a rooted and

full binary tree 𝑇 = (𝑉, 𝐸) with its leaves uniquely
labeled (i.e., identified) by the elements of 𝐿 and edge
lengths described by the function 𝑙 ∶ 𝐸 → ℝ+. The root
of 𝑇 is denoted by 𝜌(𝑇). For a node 𝑣 in 𝑇, we denote its
parent by 𝑝(𝑣) and its children by 𝑣(1) and 𝑣(2) if such
nodes exist. By 𝑇𝑣 we denote the subtree of 𝑇 rooted at 𝑣.

The distance between two nodes 𝑢, 𝑣 in 𝑇, denoted by
𝑑(𝑢, 𝑣), is defined as the sum of the edge lengths along
the simple path between 𝑢 and 𝑣.

To allow for unrooted and/or multifurcating trees,
given such a tree, we arbitrarily root it and add the min‑
imum number of edges with length 0 to make it strictly
bifurcating and preserve pairwise taxon distances.

Representative Sampling
Our core problem is as follows: given a tree 𝑇, identify

a set of its leaves that best represents its taxon diver‑
sity. Problem 1 formalizes this idea. We allow leaves in
𝑇 to be weighted according to some real‑valued func‑
tion 𝑤∶ 𝐿 → ℝ+ (the default weights are 𝑤(𝑙) = 1 for all
𝑙 ∈ 𝐿).
Problem 1. Given a tree 𝑇 over a taxon set 𝐿, and a

positive integer 𝑘 < |𝐿|, find

𝑆 ∶= arg min
|𝑆|=𝑘,𝑆⊂𝐿

⎛⎜
⎝

∑
𝑣∈𝐿

𝑑(𝑣, 𝑆) ⋅ 𝑤(𝑣)⎞⎟
⎠

,

where 𝑑(𝑣, 𝑆) ∶= min𝑐∈𝑆 𝑑(𝑣, 𝑐).
That is, a set of representatives 𝑆 should minimize the

sum of weighted distances from all leaves to their closest
representatives. This problem is a weighted version on
the famous 𝑘‑medoids problem (Kaufman, Rousseeuw
1990) on a phylogenetic tree.

Next, we want to account for potentially pre‑selected
representatives 𝐶 and a coverage radius 𝑟. The cover‑
age radius implies that a single representative covers all
the diversity on the tree within the radius. Therefore, we
define the function

𝑑𝑟(𝑣, 𝑆) ∶= {0, if 𝑑(𝑣, 𝑆) ≤ 𝑟
𝑑(𝑣, 𝑆) − 𝑟, otherwise.

Problem 2 then generalizes Problem 1 and accounts for
𝐶 and 𝑟.
Problem 2. Given a positive integer 𝑘 < |𝐿|, a non‑

negative radius 𝑟, and a set 𝐶 ⊂ 𝐿 of prior representa‑
tives, find

𝑆 ∶= arg min
|𝑆|=𝑘,𝑆⊂𝐿

⎛⎜
⎝

∑
𝑣∈𝐿

𝑑𝑟(𝑣, 𝑆 ∪ 𝐶) ⋅ 𝑤(𝑣)⎞⎟
⎠

. (1)

We also define 𝑑𝑟,𝐶,𝑤(𝑣, 𝑆) ∶= 𝑑𝑟(𝑣, 𝑆 ∪ 𝐶)𝑤(𝑣) to
simplify notation.
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Proposition 1. Problem 2 can be solved in 𝑂(𝑛2𝑘) time
for 𝑛 = |𝐿| using Tamir’s algorithm for the 𝑝‑medians
problem on a tree.
Proof : Tamir (1996) solved the following generaliza‑

tion of the 𝑝‑medians problem on trees:

arg min
|𝑆|=𝑝,𝑆⊂𝑉

⎛⎜
⎝

∑
𝑐∈𝑆

𝑐(𝑣) + ∑
𝑣∈𝑉

𝑓𝑣(𝑑(𝑣, 𝑆))⎞⎟
⎠

, (2)

where 𝑐(𝑣) is some cost function on the nodes of the tree
and 𝑓𝑣 is a non‑negative and non‑decreasing function
specific to node 𝑣.

We claim that Problem 2 is a special case of general‑
ized 𝑝‑medians. We show the reduction by first assign‑
ing

𝑐(𝑣) = {0, if 𝑣 is a leaf,
∞, otherwise

to prevent selecting non‑leaf nodes as representatives.
Further, we set 𝑓𝑣 to 0 for all non‑leaf 𝑣. For 𝑣 ∈ 𝐿, let
𝑚𝑣 ∶= 𝑑(𝑣, 𝐶) if 𝐶 ≠ ∅ and 𝑚𝑣 ∶= ∞ otherwise. Then

𝑓𝑣(𝑑) = {0, if min(𝑑, 𝑚𝑣) ≤ 𝑟,
(min(𝑑, 𝑚𝑣) − 𝑟) ⋅ 𝑤(𝑣), otherwise.

Observe that for 𝑣 ∈ 𝐿, 𝑑𝑟(𝑣, 𝑆∪𝐶)⋅𝑤(𝑣) = 𝑓𝑣(𝑑(𝑣, 𝑆)).
It is then apparent that under this reduction Equation (2)
is equivalent to Equation (1) when 𝑆 ⊂ 𝐿 and 𝑝 = 𝑘
(recall that 𝑆 ⊂ 𝐿 is enforced by cost assignments). □

Improving the Dynamic Programming Solution
for Problem 2

Tamir’s dynamic programming algorithm for gener‑
alized 𝑝‑medians has both best‑case and worst‑case time
and space complexity of 𝑂(𝑘𝑛2). This can be limiting
in practice for trees with over 1000 leaves and large 𝑘.
Therefore, we show how to achieve better (in‑practice)
time and space efficiency.

Overview of the Tamir algorithm.—We begin by reviewing
the original Tamir (1996) algorithm for the p‑medians
problem (Equation 2). For convenience of connecting
the 𝑘‑medoids and 𝑝‑medians problems, we set 𝑝 = 𝑘.

For each node 𝑣𝑖 with 1 ≤ 𝑖 ≤ |𝑉|, let 𝑟𝑗
𝑖 be the 𝑗th clos‑

est to 𝑣𝑖 node in 𝑉 (1 ≤ 𝑗 ≤ |𝑉|). Ties are resolved, so
that nodes in 𝑇𝑣𝑖

precede nodes outside the subtree; if
two tied nodes are both within 𝑇𝑣𝑖

or both outside, then
they are placed in order of the post‑order traversal of
𝑇. Then [𝑟𝑗

𝑖] lists for each 𝑣𝑖 can be computed in 𝑂(𝑛2)
time (Tamir 1996).

Tamir then defines two subproblems: 𝐺 and 𝐹. For
𝑣𝑖 ∈ 𝑉, 1 ≤ 𝑞 ≤ 𝑘, and 𝑟 = 𝑟𝑗

𝑖 ∈ 𝑉, 𝐺[𝑣, 𝑞, 𝑟] is the op‑
timum value of Equation 2 restricted to the subproblem
in the subtree 𝑇𝑣𝑖

, at most 𝑞 representatives, and the con‑
dition that at least one of the representatives is 𝑟𝑠

𝑖 ∈ 𝑇𝑣𝑖
,

where 𝑠 ≤ 𝑗. The last condition implies that there is at
least one representative at a distance at most 𝑑(𝑣, 𝑟) from
𝑣 within the 𝑇𝑣𝑖

subtree. Similarly, for 𝑟 = 𝑟𝑗
𝑖 ∈ 𝑇\𝑇𝑣𝑖

(i.e., 𝑟 outside the 𝑇𝑣𝑖
subtree) and 0 ≤ 𝑞 ≤ 𝑘, 𝐹[𝑣, 𝑞, 𝑟]

is the optimum value of the subproblem restricted to
𝑇𝑣𝑖

, 𝑞 representatives, and the condition that there ex‑
ists a representative outside of 𝑇𝑣𝑖

at a distance exactly
𝑑(𝑣, 𝑟) from 𝑣. Intuitively, 𝑟 in 𝐺 and 𝐹 is a radius that
controls how far from 𝑣 we can set a representative. Let
𝑣0 = 𝜌(𝑇), the solution to the overall problem is then
given by 𝐺[𝑣0, 𝑘, 𝑣𝑛

0]. We can then establish the follow‑
ing relations that allow us to dynamically compute 𝐺
and 𝐹 subproblems (for the treatment of edge cases, see
Tamir 1996). Assume that 𝑣𝑖 has two children 𝑢 and 𝑤,
and 𝑟𝑗

𝑖 is within the 𝑇𝑢 subtree. Then,

𝐺[𝑣𝑖, 𝑞, 𝑟𝑗
𝑖] = min

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝐺[𝑣𝑖, 𝑞, 𝑟𝑗−1
𝑖 ], 𝑓𝑣𝑖

(𝑑(𝑣𝑖, 𝑟
𝑗
𝑖))

+ min
1≤𝑞1≤|𝑉𝑢 |
0≤𝑞2≤|𝑉𝑤 |
𝑞1+𝑞2=𝑞

(𝐺[𝑢, 𝑞1, 𝑟𝑗
𝑖] + 𝐹[𝑤, 𝑞2, 𝑟𝑗

𝑖])
⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

If 𝑟𝑗
𝑖 is outside the 𝑇𝑣𝑖

subtree, then

𝐺[𝑣𝑖, 𝑞, 𝑟𝑗
𝑖] =𝐺[𝑣𝑖, 𝑞, 𝑟𝑗−1

𝑖 ]; and

𝐹[𝑣𝑖, 𝑞, 𝑟𝑗
𝑖] = min

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝐺[𝑣𝑖, 𝑞, 𝑟𝑗
𝑖], 𝑓𝑣𝑖

(𝑑(𝑣𝑖, 𝑟
𝑗
𝑖))

+ min
0≤𝑞1≤|𝑉𝑢 |
0≤𝑞2≤|𝑉𝑤 |
𝑞1+𝑞2=𝑞

(𝐹[𝑢, 𝑞1, 𝑟𝑗
𝑖] + 𝐹[𝑤, 𝑞2, 𝑟𝑗

𝑖])
⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Reducing the size of the dynamic programming matrix.—
First, note that Tamir’s p‑medians problem considers all
nodes in a tree as potential representatives, whereas in
Problem 2, we only consider leaf nodes. To save time
and space, we restrict the sequences [𝑟𝑗

𝑖], defined above,
to the subsequences [𝑙𝑗𝑖], where 𝑙𝑗𝑖 is the 𝑗th closest to
𝑣𝑖 leaf in 𝑇. Subsequently, the subproblems 𝐺 and 𝐹
are now defined as 𝐺[𝑣𝑖, 𝑞, 𝑙𝑗𝑖] and 𝐹[𝑣𝑖, 𝑞, 𝑙𝑗𝑖], restrict‑
ing the “radius” parameter in those subproblems to
leaves. Lemma 1 then allows us to further reduce the
redundancies in the dynamic programming algorithm
by Tamir.
Lemma 1. For 𝑞 > 0, let 𝑟−𝑞 denote the 𝑞‑th farthest

from 𝑣 leaf in 𝑇𝑣, and 𝑑−𝑞 ∶= 𝑑(𝑣, 𝑟−𝑞). Then for any 𝑟 ∈ 𝐿
with 𝑑(𝑣, 𝑟) > 𝑑−𝑞,

𝐺[𝑣, 𝑞, 𝑟] = 𝐺[𝑣, 𝑞, 𝑟−𝑞] for 𝑟 ∈ 𝑇𝑣 (3)
𝐹[𝑣, 𝑞, 𝑟] = 𝐺[𝑣, 𝑞, 𝑟−𝑞] for 𝑟 ∈ 𝑇\𝑇𝑣. (4)
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4 SYSTEMATIC BIOLOGY

Proof : As there are at least 𝑞 representatives in 𝑇𝑣, at
least one of them has to be no further then 𝑑−𝑞 from 𝑣.
Equation (3) then follows from the definition of 𝐺.

Further, note that for 𝑟 ∈ 𝑇\𝑇𝑣 with 𝑑(𝑣, 𝑟) > 𝑑−𝑞

and any leaf 𝑙 ∈ 𝑇𝑣, we have 𝑑(𝑙, 𝑟) = 𝑑(𝑙, 𝑣) + 𝑑(𝑣, 𝑟).
Let 𝑑𝑙 be the distance from 𝑙 to the closest representa‑
tive in 𝑇𝑣. Then 𝑑𝑙 ≤ 𝑑(𝑙, 𝑣) + 𝑑−𝑞. That is, any 𝑙 is closer
to a representative in 𝑇𝑣 than to 𝑟. Hence, having 𝑟 as a
representative does not affect the subproblem in 𝑇𝑣. □

Lemma 1 implies that we do not need to compute
subproblems 𝐺[𝑣, 𝑞, 𝑟] and 𝐹[𝑣, 𝑞, 𝑟] when 𝑑(𝑣, 𝑟) > 𝑑−𝑞.
This observation significantly improves the best‑case
complexity of the algorithm as shown in Lemma 2.
Lemma 2. The best‑case time and space complexity of

the dynamic programming algorithm is 𝑂(𝑛2+𝑘𝑛 log 𝑛),
which is achieved when 𝑇 is a perfectly balanced tree
with uniform edge lengths.

In the Results section, we demonstrated that Lemma 1
proved highly effective on simulated data.

Representative Coverage
In addition to the representative sampling, we solve a

coverage problem. Similarly to Problem 2, we are given
(an optional) set of prior representatives 𝐶 and a cov‑
erage radius 𝑟. The goal is to find a minimum set of
representatives 𝑆, so that 𝑆 ∪ 𝐶 covers all leaves in the
tree (within radius 𝑟).
Problem 3. Given set 𝐶 ⊂ 𝐿 and non‑negative 𝑟 ∈ ℝ,

find minimum set 𝑆, s.t.

∑
𝑣∈𝐿

𝑑𝑟(𝑣, 𝑆 ∪ 𝐶) = 0. (5)

We show that this problem can be solved in 𝑂(𝑛2)
time using dynamic programming similar to Tamir
(1996).

Recall that [𝑙𝑗𝑖] lists for each node 𝑣𝑖 ∈ 𝑇, where 𝑙𝑗𝑖 is
the 𝑗th closest to 𝑣𝑖 leaf in 𝐿, can be computed in 𝑂(𝑛2)
time. We then define 𝐺(𝑣𝑖, 𝑙

𝑗
𝑖) to be the minimum num‑

ber of representatives required to cover 𝑇𝑣𝑖
∩ 𝐿, so that

at least one of these representatives is 𝑙𝑘𝑖 , where 𝑘 ≤ 𝑗.
For 𝑙𝑗𝑖 ∉ 𝑇𝑣𝑖

, 𝐹(𝑣𝑖, 𝑙
𝑗
𝑖) is the minimum number of repre‑

sentatives required to cover 𝑇𝑣𝑖
∩ 𝐿, while the closest

representative outside of 𝑇𝑣𝑖
is 𝑙𝑗𝑖.

Base case If 𝑣𝑖 is a leaf, 𝐺(𝑣𝑖, 𝑙
𝑗
𝑖) = 1 for all 𝑗. If 𝑑(𝑣𝑖, 𝐶) ≤

𝑟 (i.e., 𝑣𝑖 is covered by one of the prior centers), then
𝐹(𝑣𝑖, 𝑙

𝑗
𝑖) = 0 for all 𝑗. Otherwise, 𝐹(𝑣𝑖, 𝑙

𝑗
𝑖) = 1[𝑑(𝑣𝑖, 𝑙

𝑗
𝑖) >

𝑟] for all 𝑗, where 1 is the indicator function.

Internal nodes For non‑leaf 𝑣𝑖 and 𝑙𝑗𝑖 ∈ 𝑇𝑣𝑖
, let 𝑣𝑖(1)

and 𝑣𝑖(2) denote the children of 𝑣𝑖. For 𝑙𝑗𝑖 ∈ 𝑇𝑣𝑖
, WLOG

assume that 𝑙𝑗𝑖 ∈ 𝑇𝑣𝑖(1)
, then

𝐺(𝑣𝑖, 𝑙
𝑗
𝑖) = min{𝐺(𝑣𝑖, 𝑙

𝑗−1
𝑖 ), 𝐺(𝑣𝑖(1), 𝑙

𝑗
𝑖) + 𝐹(𝑣𝑖(2), 𝑙

𝑗
𝑖)},

where 𝐺(𝑣𝑖, 𝑙
𝑗−1
𝑖 ) = ∞ for 𝑗 = 0. Further, for 𝑙𝑗𝑖 ∉ 𝑇𝑣𝑖

, we
have

𝐹(𝑣𝑖, 𝑙
𝑗
𝑖) = min{𝐺(𝑣𝑖, 𝑙

𝑗
𝑖), 𝐹(𝑣𝑖(1), 𝑙

𝑗
𝑖) + 𝐹(𝑣𝑖(2), 𝑙

𝑗
𝑖))}

The optimal number of representatives required to
cover 𝐿 is then given by 𝐺(𝜌(𝑇), 𝑙|𝐿|

𝜌(𝑇)). Consequently,
the algorithm runs in 𝑂(𝑛2) time and space.

Constraining the Pool of Representatives
We allow users to add constraints of two types to

Problems 2 and 3:

1. A subset of taxa 𝐴 can be chosen as representatives,
but do not contribute to the objective function (i.e.,
excluded from summation in Equations 1 and 5).

2. A subset of taxa 𝐵 contribute to the objective func‑
tion, but cannot be chosen as representatives.

For Problem 2, both constraints can be satisfied by ap‑
propriately assigning functions 𝑐 and 𝑓𝑣 for the respec‑
tive taxa. In particular, (1) is satisfied by assigning 𝑓𝑣 = 0
for 𝑣 ∈ 𝐴 and (2) is satisfied by assigning 𝑐(𝑣) = ∞ for
𝑣 ∈ 𝐵.

Problem 3 with the added constraints can be solved
in a similar fashion. However, it is possible that inclu‑
sion of constraint (2) will make the complete coverage
infeasible. In that case, parnas finds representatives that
cover as much diversity as possible by iteratively solv‑
ing Problem 2 with increasing the number of represen‑
tatives 𝑘, until the objective function cannot be further
improved.

Variations of the Coverage Radius
When using a maximum likelihood phylogenetic tree

topology constructed from nucleotide sequences, one
can be interested in re‑scaling the tree so that branch
lengths represent the number of amino acid substitu‑
tions. This can be needed to appropriately specify a
coverage radius in relation to % amino acid sequence
divergence rather than nucleotide divergence. parnas of‑
fers this option by using a user‑specified amino acid
alignment and TreeTime (Sagulenko et al. 2018) to infer
ancestral amino acid substitutions and rescale the tree
edges to represent the number of substitutions on that
edge. This is motivated by influenza A virus in swine
analysis, where a 5% amino acid divergence radius in
the HA1 subunit has been used to identify genetically
novel clades of viruses that are antigenically novel (An‑
derson et al. 2020). The tree may also be re‑scaled us‑
ing antigenic prediction models (Neher et al. 2016) so
that vaccination coverage of predicted antigenic diver‑
sity may be quantified. In addition, we implemented
a binary coverage problem, where parnas selects repre‑
sentatives that cover as much taxon weight as possible
(instead of weighted diversity), as follows:
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Problem 4. Given a positive integer 𝑘 < |𝐿|, a non‑
negative radius 𝑟, and a set 𝐶 ⊂ 𝐿 of prior representa‑
tives, find

𝑆 = arg min
𝑆⊂𝐿,|𝑆|=𝑘

⎛⎜
⎝

∑
𝑣∈𝐿

1[𝑑(𝑣, 𝑆 ∪ 𝐶) > 𝑟] ⋅ 𝑤(𝑣)⎞⎟
⎠

.

Quantifying Represented Diversity
Given a solution to Problem 2, we may ask how much

diversity the selected strains represent. To help answer
this question, we adapt ideas from k‑means cluster‑
ing, where an optimal number of clusters is often cho‑
sen based on the “variance explained” by the cluster
centers—a concept related to an F‑ratio statistic (Bock
1985). In particular, given a set 𝑋 ∈ ℝ𝑝 and a partition of
𝑋 into clusters 𝑋1, … , 𝑋𝑘 with cluster means �̄�1, … , �̄�𝑘,
the variance explained can be calculated as

( ∑𝑥∈𝑋 ||𝑥 − �̄�||22) − ( ∑𝑘
𝑖=1 ∑𝑥∈𝑋𝑖

||𝑥 − �̄�𝑖||22)
∑𝑥∈𝑋 ||𝑥 − �̄�||22

.

That is, the total sum of squares (TSS) minus within‑
cluster sum of squares (WSS), divided by TSS.

Our computational problem is defined in terms of
representatives. Hence, we define “cluster means” as
their respective representatives. That is, let 𝑚0 be a rep‑
resentative for entire set 𝐿 (a solution to Problem 2 for
𝑘 = 1). Further, let 𝑆 = {𝑚1, … , 𝑚𝑘} be a solution to
Problem 2 for 𝑘 > 1. We partition set 𝐿 into 𝐿1, … , 𝐿𝑘 ac‑
cording to the closest representatives 𝑚𝑖. Then, we say
that 𝑆 represents 𝑃% of overall diversity, where

𝑃∶=
∑𝑙∈𝐿 𝑑𝑟,𝐶,𝑤(𝑙, 𝑚0)−∑𝑘

𝑖=1 ∑𝑙∈𝐿𝑖
𝑑𝑟,𝐶,𝑤(𝑙, 𝑚𝑖)

∑𝑙∈𝐿 𝑑𝑟,𝐶,𝑤(𝑙, 𝑚0) × 100.

Note that 𝑃 accounts for the coverage radius 𝑟 and prior
representatives 𝐶. Intuitively, each selected leaf rep‑
resents the leaves closest to it. Then 𝑑𝑟,𝐶,𝑤(𝑙, 𝑚) is an
“error”‑term for leaf 𝑙. 𝑃 measures the reduction in er‑
ror from 1 to 𝑘 representatives and hence the increase in
represented (weighted) diversity.

Runtime Comparison with ADCL
We implemented parnas (Phylogeny‑Aware Repre‑

seNtAtive Sampling) using Python 3 and Numba (Lam
et al. 2015) for just‑in‑time compilation of the dynamic
programming algorithms. We simulated 80 birth–death
trees with the birth rate 𝜇 = 1 and death rate 𝛿 = 0.5
and the number of leaves, 𝑛, varying between 500 and
4000 with step 500 (10 trees per fixed 𝑛). We then exe‑
cuted parnas, ADCL‑full, and ADCL‑PAM on each tree
with fixed 𝑘 = 100 (i.e., choosing 100 representatives).
ADCL‑full and ADCL‑PAM are methods from (Matsen
et al. 2013) which address Problem 1 and are a part of the
pplacer suite of methods (Matsen et al. 2010). We mea‑
sured the runtime of each method as well as the memory
savings achieved in parnas.

In addition, we evaluated how the methods scale as
the number of representatives (𝑘) grows. We ran all
three methods on the trees with 𝑛 = 2000 leaves and
𝑘 varying from 40 to 1000 with step 40. This study
was conducted on the USDA‑ARS SCINet Ceres high‑
performance computing cluster https://scinet.usda.gov.
Each method was given a single 2.4 GHz core with 16GB
of RAM per replicate.

Performance Comparison with Treemmer Strain Selections
An existing gene selection approach was introduced

by Menardo et al. 2018, and we compared the run‑
time of parnas with this method. Treemmer is a ran‑
domized method without an explicit objective function.
Therefore, we evaluated the representatives computed
by Treemmer based on how close, on average, a taxon
was to its closest representative (i.e., the k‑medoids ob‑
jective). For a simulated tree with 1000 leaves, we used
1) Treemmer and 2) random sampling to select 𝑘 =
10, 50, 250 taxa and evaluated the selected taxa using the
k‑medoids objective. As Treemmer is randomized, for
each 𝑘 we performed random and Treemmer sampling
100 times to obtain a representative distribution.

Influenza A Virus Dataset Collection and Curation
Influenza A viruses (IAV) are the causative agents of

an important viral respiratory disease in pigs and hu‑
mans. In pigs, subtypes of H1N1, H1N2, and H3N2 are
endemic in swine around the world. Despite only three
circulating subtypes, the genes encoding the surface
glycoproteins, hemagglutinin (HA), and neuraminidase
(NA), exhibit significant diversity due to two‑way trans‑
mission of IAV between swine and humans (Nelson
et al. 2012). Globally, approximately 30 phylogenetic
clades of H1 and H3 genes were detected worldwide
in the past 3 years in swine (Anderson et al. 2020), and
across the same time period 16 H1 and H3 clades were
detected in the United States (Arendsee et al. 2021).
We downloaded 4090 H1 and 1572 H3 IAV in swine
hemagglutinin (HA) genes from the Influenza Research
Database (Zhang et al. 2017) [accessed 13 June 2022].
We restricted analyses to sequences within the USDA
influenza A virus in swine surveillance system (indi‑
cated by a nine digit alpha‑numeric “A0” code in the
strain name) collected between 2016 and 2021. Phylo‑
genetic clade classifications were determined using the
H1 swine influenza H1 HA clade tool on IRD (An‑
derson et al. 2016) and H3 clades were assigned using
octoFLU (Chang et al. 2019). The sequences were subse‑
quently aligned using MAFFT v7.475 (Katoh, Standley
2013) and we inferred H1 and H3 phylogenetic trees us‑
ing FastTree v2.1.11 (Price et al. 2010) that were then
rooted using TreeTime v.0.8.4 (Sagulenko et al. 2018).
We extracted the HA1 subunit amino‑acid sequences us‑
ing flutile v0.13.1 (https://github.com/flu‑crew/flutile)
since the HA1 subunit is a major target for protec‑
tive antibody immunity and divergence in HA1 may
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6 SYSTEMATIC BIOLOGY

act as a proxy for the antigenic distance between HA
genes (Zeller et al. 2021).

To demonstrate how parnas can re‑scale trees to in‑
clude antigenic phenotype predictions, a process not yet
accomplished for IAV in swine (Zeller et al. 2021), we
also applied parnas to analyze the diversity of human
seasonal H3N2 IAV. Using Nextstrain (Hadfield et al.
2018; Sagulenko et al. 2018) [accessed 2 March 2023],
we downloaded a time‑scaled phylogenetic tree cover‑
ing human H3N2 viruses in a 6‑month window up to 3
February 2023 that included 𝑛 = 2011 taxa and edges
annotated by the tree antigenic advance model (Neher
et al. 2016). We rescaled the input tree for parnas so that
the edge lengths represented their respective antigenic
advance and applied parnas’s coverage algorithm to find
representatives that were required to cover all diversity
on the tree within a 2 antigenic unit (AU) radius. The
2 AU threshold is based upon empirical hemagglutina‑
tion inhibition (HI) data (Lapedes, Farber 2001) where
the distance between viruses is quantified in antigenic
space and 1 AU is equivalent to a 2‑fold dilution in the
HI assay. Currently, an 8‑fold HI difference (equivalent
to 3 AU) has been sufficient to consider updating the
human seasonal vaccine strain (Anderson et al. 2020),
and greater than 2 AU is considered to be a biologically
significant difference between viruses.

Quantifying Changes in SARS‑CoV‑2 Genomic Diversity
To demonstrate how parnas can identify changes in

genomic diversity on a broader and larger dataset,
we downloaded the maximum parsimony SARS‑CoV‑
2 Audacity v1.32 tree from GISAID [accessed 2 Jan‑
uary 2023] (Shu, McCauley 2017; Lanfear 2020). This
phylogenetic tree contained 11,390,555 high‑quality
SARS‑CoV‑2 genomes as leaves and was built using
UShER (Turakhia et al. 2021).

We grouped all genomes according to their date of
collection into quarters, starting with 2020Q1 (January
to March 2020, inclusively) and up to 2022Q4. The num‑
ber of genomes within each quarter ranged from 43,000
to 2,673,000. We subsequently randomly sampled 10,000

genomes (100 times) from each quarter and extracted
the corresponding subtree from the global Audacity
phylogeny. We then analyzed the resulting 12×100 sub‑
trees using parnas. For each subtree, we calculated the
number of genomes required to cover all leaves in the
subtree within a five nucleotide radius. That is, parnas
finds the minimum number of unique genomes so that
all other genomes are at most five substitutions away
from a representative. We chose the five substitution
threshold, because the commonly applied lineage classi‑
fication pipeline, pangolin, frequently separates genetic
clades by four to five substitutions across the genome
(see Rambaut et al. 2020). By repeating the process 100
times for each quarter, we were able to estimate the
number of unique strains per 10,000 genomes per quar‑
ter providing a robust measure of SARS‑CoV‑2 genomic
diversity over time.

RESULTS

PARNAS Outperforms Existing Representative
Sampling Methods

Comparison with ADCL.—We compared the scalability
of parnas with two core algorithms from Matsen et al.
(2013). These algorithms solve the unweighted version
of Problem 1 (representative sampling). The first al‑
gorithm, ADCL‑full, is an exact algorithm for Prob‑
lem 1, wheras the second algorithm, ADCL‑PAM, is
a heuristic and an adaptation of the classic Partition
Around Medoids (PAM) k‑medoids heuristic (Kauf‑
man, Rousseeuw 1990). parnas solves a more gen‑
eral problem (Problem 2) than ADCL methods in
polynomial‑time. Specifically, we measured both com‑
putational and memory savings in terms of the reduc‑
tion of the size of the dynamic programming (DP) table.
parnas was significantly more scalable than ADCL

methods on simulated data (Fig. 1). This is particularly
encouraging in the case of ADCL‑PAM, as it is an inex‑
act heuristic, whereas parnas is guaranteed to compute
optimal representatives. Notably, parnas showed nearly
linear runtime increase under both fixed 𝑛 (number of
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FIGURE 1. Runtime of parnas and ADCL methods with increasing number of leaves (left) and increasing number of representatives (right).
The vertical error bars show standard deviation (across 10 replicates) around the mean.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/advance-article/doi/10.1093/sysbio/syad028/7174231 by D

igiTop U
SD

A's D
igital D

esktop Library user on 08 O
ctober 2023



2023 MARKIN ET AL. ‑ PARNAS: OBJECTIVELY SELECTING THE MOST REPRESENTATIVE TAXA ON A PHYLOGENY 7

0

100

200

300

1000 2000 3000 4000

Number of leaves (n)

R
u

n
ti
m

e
 (

s
e

c
o

n
d

s
)

methods

Treemmer

parnas

10

20

30

40

50

60

70

80

90

100

110

120

130

140

10 50 250

Number of representatives (k)

%
 D

is
ta

n
c
e

 f
ro

m
 o

p
ti
m

a
l

methods

Treemmer

Random sampling

FIGURE 2. Runtime of parnas and Treemmer with increasing number of leaves and fixed 𝑘 = 100 (left); and the assessment of Treemmer
representatives in comparison to the optimal representatives computed by parnas and random sampling (right).

taxa) and 𝑘 (number of representatives). We further eval‑
uated the DP table reduction due to Lemma 1 above. For
fixed 𝑘 = 100, the average memory savings were 85%
across 80 replicates, supporting the effectiveness of our
approach.

Comparison with Treemmer strain selections.—We evalu‑
ated parnas against Treemmer in terms of the runtime
and the representativity of generated selections. Treem‑
mer uses a randomized procedure to select represen‑
tative taxa across a phylogeny with a goal to reduce
branch redundancy and does not explicitly solve the
k‑medoids problem like parnas and ADCL. We evalu‑
ated Treemmer in terms of the average distance of taxa
to their closest Treemmer‑selected representative (i.e.,
the k‑medoids objective), and we computed how far
Treemmer‑selected representatives were from the opti‑
mal representatives by parnas in terms of that objective.
parnas is significantly faster than Treemmer on large
phylogenetic trees (Fig. 2). We observed that Treemmer
representatives were generally better than randomly se‑
lected representatives, but they were 10–50% away from
the optimum computed by parnas. That is, Treemmer‑
selected representatives are 10–50% further away from
the taxa than the optimal representatives. The difference
was particularly large for 𝑘 = 250, where Treemmer rep‑
resentatives were 40–50% divergent from the optimum.

PARNAS‑Selected Representatives in Influenza
A Virus in Swine

A central question in the development of a polyva‑
lent influenza vaccine is determining how many HA
components are sufficient to cover observed diversity
(Anderson et al. 2012). We addressed this using the last
6 years of USDA IAV in swine surveillance data, and
evaluated how many H1 and H3 HA genes were re‑
quired to cover the genetic diversity of IAV in swine.
Though the link between genetic diversity and antigenic
phenotype varies (Bolton et al. 2019), in general anti‑
genic and genetic distances are well‑correlated (Smith

et al. 2004). This correlation can be further strengthened
by increasing the weight of mutations in epitope sites
or locations that have been identified as important in
determining antigenic phenotype (Abente et al. 2016;
Rajão et al. 2018; Zeller et al. 2021). Here, we applied
the conservative assumption that a hemagglutinin (HA)
gene would retain some cross‑reactivity against another
HA gene that is within 5% amino‑acid divergence in the
HA1 subunit (Anderson et al. 2020). A second consider‑
ation in vaccine design is the determination of when to
update the components, and our study evaluated how
long parnas‑selected strains remained adequate repre‑
sentatives of the more contemporary viruses detected in
the USDA IAV in swine surveillance system.

For the H1 subtype, we used parnas to select 2, 4, and 6
of the most representative HA genes for the surveillance
data collected in 2016, 2017, and 2018. Subsequently,
we calculated how many HA genes in each year were
within 5% divergence from the parnas representatives,
that is, for the 2016 selections, we determined how much
diversity they covered in each year between 2016 and
2021. Similarly, for the H3 subtype, where fewer ge‑
netic clades cocirculate than in the H1 subtype (Arend‑
see et al. 2021), we used parnas to select 1, 2, and 3 of
the most representative HA genes for 2016, 2017, and
2018. We executed parnas with the option to rescale the
tree edges with the number of HA1 amino acid substi‑
tutions and specified a 5% divergence radius (16 amino
acid substitutions).

We observed that the parnas selected representatives
came from the most frequently detected circulating
HA clades. For example, four 2017 selections from
the H1 tree came from clades 1A.3.3.3 (𝛾), 1A.1.1 (𝛼),
1B.2.2.1 (𝛿1𝑎), and 1B.2.1 (𝛿2), which were the most fre‑
quently detected H1 clades in the United States that
year (Arendsee et al. 2021). Similarly, selecting two rep‑
resentatives in the H3 tree consistently produced strains
from the 1990.4.a and 2010.1 clades—the two most fre‑
quently detected H3 clades in the United States since
2015 (Zeller et al. 2018). Selecting four H1 HA genes
were sufficient to cover over 70% overall diversity for
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FIGURE 3. Percent of circulating influenza A virus in swine hemagglutinin genes that are within 5% divergence of the parnas‑selected rep‑
resentatives. For H1 (top row), we selected 2, 4, and 6 representative strains with parnas for 2016, 2017, and 2018, and tracked how these
representative HA genes covered H1 HA genes that circulated in the following years. Similarly, for H3 (bottom row), we selected 1, 2, and 3
representatives, and tracked how these representative HA genes covered H3 HA genes that circulated in the following years.

the first year and the subsequent year, that is, selections
were adequate to cover the majority of observed diver‑
sity across 2 years (Fig. 3). Increasing the number of
representative strains to six guaranteed over 85% cov‑
erage in the first 2 years, whereas decreasing the num‑
ber of selections to two reduced coverage to less than
50%. For the H3 subtype, three HA genes were sufficient
to cover more than 85% of diversity in the same year,
and the coverage remained consistently high for each
subsequent year (Fig. 3). The 2016 representatives pro‑
vided close to 90% coverage until 2020 (i.e., for 5 years
straight). In H1s, the decrease in coverage was more
pronounced over the years.

PARNAS Identified a Gap in Human H3 Influenza A Virus
Vaccine Coverage

For human H3N2 IAVs it is possible to integrate
antigenic advance prediction models (Neher et al. 2016;
Huddleston et al. 2020) contrasting the 5% threshold
we applied as a proxy for antigenic difference with
IAV in swine genomic data. This approach can im‑
prove the sensitivity of parnas to single mutations in
the HA gene that may have a disproportionate im‑
pact on phenotype. We downloaded a phylogenetic
tree of 𝑛 = 2011 H3N2 viruses with edges annotated
by the tree model of antigenic advance (Neher et al.
2016; Hadfield et al. 2018; Sagulenko et al. 2018). One
thousand nine hundred and thirty‑eight of the viruses

were contemporary, that is, collected between August
2022 and January 2023. Using parnas we determined
that three representatives were sufficient to cover the
observed antigenic diversity of contemporary viruses
within a 2 AU distance. The parnas selection of three rep‑
resentatives agrees with the Nextstrain genomic nomen‑
clature that identifies three major contemporary H3N2
clades (2a, 2b, and 1a). We then specified the most recent
WHO recommended vaccine strains (A/Darwin/06/2021
and A/Cambodia/e0826360/2020) as existing represen‑
tatives and used parnas to identify whether these two
strains alone were sufficient for complete coverage. This
analysis (Fig. 4) shows that two of the contemporary
H3N2 clades are sufficiently represented by existing
vaccine strains; however, a component of observed anti‑
genic diversity is not represented, and an additional
strain from the 2b clade would be required to complete
the coverage of the antigenic diversity of the observed
H3 genes. Of the 804 H3 2b HA genes detected, 52 were
outside the 2 AU distance and these strains could form a
persistent clade of viruses into future influenza seasons.

Reduced Genetic Diversity Following the Emergence of
SARS‑CoV‑2 Variants

We applied parnas to quantify the genetic diversity of
SARS‑CoV‑2 viruses over time. We used the parnas cov‑
erage algorithm to identify the number of unique SARS‑
CoV‑2 genomes—up to a five nucleotide substitution
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FIGURE 4. A phylogenetic tree of 𝑛 = 2011 human H3N2 hemagglutinin genes with edge lengths representing antigenic advance (1 U of
antigenic advance correlates with a 2‑fold dilution in the hemagglutination inhibition assay). The parnas coverage algorithm identified that an
additional strain from the 2b clade would ensure complete antigenic coverage of the tree, complementing the previously used vaccine antigens.

radius—that circulated globally between January 2020
and December 2022. We grouped 11, 390, 555 genomes
from the Audacity maximum parsimony tree into yearly
quarters (2020Q1 to 2022Q4), and determined the num‑
ber of unique strains per 10, 000 genomes within each
quarter. Thus, we estimated general fluctuations in the
genetic diversity of SARS‑CoV‑2 genomes over time
(Fig. 5).

We observed that the genetic diversity of SARS‑CoV‑2
viruses rapidly increased in 2020 following the emer‑
gence of the virus (Van Dorp et al. 2020). The overall
diversity, however, decreased in 2021Q2 and Q3, coin‑
ciding with the global spread of Alpha and Delta variant
lineages. Peak diversity was reached in 2021Q4, during
the later phase of the Delta wave and the emergence of
the Omicron variant lineage (Fig. 5b). Later, as Omicron
rapidly became a dominant clade globally, we observed
a significant drop in overall genetic diversity in 2022Q1
with a gradual increase in diversity over the remainder
of 2022. These data (Fig. 5) suggest that the emergence
of a “successful” variant may be associated with the
amount of genetic diversity in the virus population, that
is, a virus that can escape vaccine and infection driven
population immunity is higher when there is more ge‑
netic diversity (a sampling effect). These data also show
how novel (invasive) SARS‑CoV‑2 variant lineages can
reduce observed genetic diversity through a mechanism
similar to a selective sweep (Kang et al. 2021; Boyle et al.
2022).

DISCUSSION

Given the rapid growth of sequence data in ge‑
netic databases, representative subsampling techniques
are essential for computation‑intensive bioinformatics
studies, objective selection of pathogen strains for phe‑
notypic characterization, and for genomic epidemiol‑
ogy (Hill et al. 2021). There has been a surge in the num‑
ber of tools that can parse sequence data or phyloge‑
netic trees. One group of methods identify clusters of re‑
lated sequences, for example, TreeCluster (Balaban et al.
2019) or PhyCLIP (Han et al. 2019), but these are unable
to objectively select strains within the identified clus‑
ters. A second group of methods select or remove sin‑
gle strains: such as TARDiS (Marini et al. 2021) that can
perform time‑aware sampling of genetic sequences, or
Treemmer (Menardo et al. 2018) that reduces taxa on a
phylogeny through pruning redundant branches. These
selection approaches either do not account for evolu‑
tion or are not able to objectively select representatives
across tens of thousands of taxa in a reasonable time.
parnas allows researchers to identify diversity groups
within their data and objectively choose representatives.
Furthermore, parnas provides wide flexibility in con‑
straining the pool of potential representatives through
the specification of prior representatives or through
the use of an optional coverage radius. Consequently,
the method can achieve time‑representative and geo‑
representative sampling by individually sampling from
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10 SYSTEMATIC BIOLOGY

FIGURE 5. a) The number of unique strains per 10,000 genomes (up to five substitutions across the genome) over 3 years following the emer‑
gence of the SARS‑CoV‑2 virus: all genomes were assessed according to their date of collection and grouped into calendar quarters. b) The
frequency of detection of SARS‑CoV‑2 genetic clades across the same time interval generated by Nextstrain (Hadfield et al. 2018) (accessed 27
January 2023). The clade names follow the Nextstrain SARS‑CoV‑2 clade nomenclature that is derived from the frequency of clade detection
and stability.

different time‑periods and geographic regions across
thousands of taxa.

We demonstrated that parnas is faster and broader
in scope than ADCL (Matsen et al. 2013). Apart from
subsampling and reference strain selection applications,
ADCL was suggested to be used for genotype impu‑
tation (Kang et al. 2015; Ye et al. 2019). Therefore, par‑
nas can be applied in a similar manner in the geno‑
type imputation pipelines with large reference datasets.
Matsen et al. also noted that “the computational com‑
plexity class of the ADCL optimization problem is not
yet clear.” In this work, we resolve this question and
demonstrate that parnas solves the ADCL optimization
problem, and a significantly more general problem, in
polynomial time.

A primary motivation for developing parnas was
the objective and representative selection of IAV in
swine for phenotypic characterization. To this end, we

demonstrated that parnas, unsupervised, selects repre‑
sentative strains from the most frequently detected IAV
sequences in swine HA clades. We showed that as few
as 6 HA genes (4 H1 and 2 H3) may be sufficient for ef‑
fective representation of circulating IAV in the United
States for approximately 2 years. A consistent challenge
in vaccine design is to determine what antigenic com‑
ponents are required, and parnas provides an objective
approach to select HA genes that represent circulating
diversity. Similarly, the algorithm provides a metric to
determine when genetic coverage is reduced. Alterna‑
tive pipelines for selection of representative strains in
IAV research have previously involved 1) clustering of
genes/genomes under a fixed divergence threshold and
2) selecting consensus or random strains within the clus‑
ters (cf. Jones et al. 2021). The advantage of parnas is that
it automatically achieves the same goal as these man‑
ual approaches while also using an objective criterion
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that accounts for the interaction between the selected
strains.

An additional application of parnas is the identifica‑
tion of genes that are not within a prescribed radius
of prior representatives. For IAV in swine, the utility
is the automated identification of HA genes that are
genetically, and potentially antigenically novel. There
are as many as 30 genetic and antigenically distinct
clades of IAV in swine globally (Anderson et al. 2020),
and more than 1000 IAV in swine HA genes are se‑
quenced every year in the United States (Arendsee et al.
2021). parnas provides a rapid, reproducible, and ob‑
jective approach to determine which of these viruses
should be characterized using in vivo and in vitro meth‑
ods. Linking computational assessments of circulating
viruses with antigenic characterization can provide em‑
pirical data for use in pandemic risk assessments of
viruses circulating in animal hosts (e.g., Souza et al.
2022). The representative viruses identified by parnas
can then be screened for mutations in antigenic epi‑
topes (Bush et al. 1999; Plotkin et al. 2002; Koelle et al.
2006) relative to existing viruses and vaccines as these
changes may be associated with antibody‑binding and
IAV fitness (Łuksza and Lässig 2014). Furthermore, we
demonstrated how the input tree to parnas may be re‑
scaled using phenotypic information: in our empirical
human seasonal H3N2 example, these data were used
to 1) identify antigenically distinct groups of viruses,
2) determine whether existing vaccine strains provided
adequate coverage across all observed diversity, and
3) we were able to identify a subset of viruses that
are likely antigenically distinct from other circulating
H3 viruses. In general, parnas can provide a rational
and reproducible approach for parsing genomic surveil‑
lance data and developing a prioritization of strains
to be comprehensively evaluated with a goal to de‑
tect novel viruses that may impact animal and human
health.
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