
Path-Difference Median Trees

Alexey Markin and Oliver Eulenstein

Department of Computer Science, Iowa State University, Ames, IA 50011, USA
{amarkin,oeulenst}@iastate.edu

Abstract. Synthesizing large-scale phylogenetic trees is a fundamen-
tal problem in evolutionary biology. Median tree problems have evolved
as a powerful tool to reconstruct such trees. Given a tree collection,
these problems seek a median tree under some problem-specific tree
distance. Here, we introduce the median tree problem for the classical
path-difference distance. We prove that this problem is NP-hard, and
describe a fast local search heuristic that is based on solving a local
search problem exactly. For an effective heuristic we devise a time effi-
cient algorithm for this problem that improves on the best-know (näıve)
solution by a factor of n, where n is the size of the input trees. Finally,
we demonstrate the performance of our heuristic in a comparative study
with other commonly used methods that synthesize species trees using
published empirical data sets.

Keywords: Phylogenetic trees, median trees, supertrees, path-difference
distance, local search.

1 Introduction

Large-scale phylogenetic trees that represent the evolutionary relationships, or
genealogy, among thousands of species offer enormous promise for society’s ad-
vancements. While such species trees are fundamental to evolutionary biology,
they are also benefiting many other disciplines, such as agronomy, biochemistry,
conservation biology, epidemiology, environmental sciences, genetics, genomics,
medical sciences, microbiology, and molecular biology [13, 14, 21]. However, de-
spite these promises, synthesizing large-scale species trees is confronting us with
one of the most difficult computational challenges in evolutionary biology today.
Here, we are focusing on synthesizing large species trees from a given collection
of typically smaller phylogenetic trees.

Traditionally, a species tree for a set of species is inferred by first selecting
a gene that is common to them, and then inferring the evolutionary history for
this gene, which is called a gene tree. Gene trees describe partial evolutionary
histories of the species genomes, and therefore, it is often assumed that gene
trees have evolved along the edges of the species tree, imitating it. However,
a major shortcoming of the traditional approach is that different gene trees
for the same set of species can describe discordant evolutionary histories. Such
discordance is frequently caused by erroneous gene trees, or can be the result
of genes which have evolved differently due to complex evolutionary processes

that have shaped the species genomes [23]. To confront these challenges, median
tree problems (also called supertree problems [4]) have emerged as a powerful
tool for inferring species trees from a collection of discordant gene trees. These
problems seek a tree, called a median tree, that is minimizing the overall distance
to the input trees based on some problem-specific distance measure. Typically,
measures that have been well-established in comparative phylogenetics are used
to compute median trees [4], and one of the oldest measures to compare trees is
the path-difference distance. However, despite the tradition and popularity of the
path-difference distance, median trees under this measure and their computation
have not been analyzed.

In this work we are studying the computation of median trees under the
path-difference distance. We show that computing median trees under the path-
difference distance is an NP-hard problem for rooted as well as unrooted input
trees. While most median tree problems used in practice are NP-hard, they have
been effectively addressed by standard local search heuristics that solve a lo-
cal search problem thousands of times. Encouraged by these promising results
we introduce a novel local search heuristic to compute median trees under the
path-difference distance. The heuristic is based on our Θ(kn3) time algorithm
(introduced here) that solves the corresponding local search problem exactly,
where n and k is the size and number of trees in a given instance of the me-
dian tree problem respectively. Our new local search heuristic allows to compute
the first large-scale median trees under the path-difference distance. Finally, we
demonstrate the performance of our heuristic in a comparative study on several
published empirical data sets, and demonstrate that it outperforms other stan-
dard heuristics in minimizing the overall path-difference. Software implementing
our local search heuristic is freely available from the authors.

Related work. Median tree problems are a popular tool to synthesize large-
scale species trees from a collection of smaller trees. Given a collection of input
trees, such problems seek a tree, called a median tree, that minimizes the sum
of its distances to each of the input trees. Since the ultimate goal of median
tree problems is to synthesize accurately species trees of enormous scale, a large
body of work has focussed on the biological, mathematical, and algorithmic
properties of median tree problems adopting numerous definitions of distance
measures from comparative phylogenetics [4]. One of the oldest such measures,
however, is the path-difference distance [5,12,26,30], and median trees under this
distance have not been analyzed. The path-difference distance between two trees
is defined through the Euclidean distance between their path-length vectors.
Each such vector represents the pairwise distances between all leaves of the
corresponding tree (i.e., the number of edges on a simple path between leaves).
Steel and Penny [30] have studied the distribution of the path-difference distance
for un-rooted trees. Complementing this work, Mir and Rosello [19] computed
the mean value of this distance for fully resolved unrooted trees with n leaves,
and showed that this mean value grows in O(n3). Variants of the path-difference
distance are the Manhattan distance of the path-length vectors [33], and their
correlation [24].

Median tree problems are typically NP-hard [4], and therefore are, in practice,
approached by using local search heuristics [1,9,17,18,32] that make truly large-
scale phylogenetic analyses feasible [18,32]. Effective local search heuristics have
been proposed and analyzed [1,9,17,18,32], and provided various credible species
trees [18,32]. Given an instance I of a median tree problem, such heuristics start
with some initial candidate species tree T and find a minimum cost tree for I
under the tree distance measure of the problem in the (local) neighborhood of
T , and so on, until a local minima is reached. At each local search step, the
heuristic solves an instance of a local search problem. The time complexity of
this local search problem depends on the tree edit operation that defines the
neighborhood, as well as on the computation time of the tree distance measure
that is used. A classical and well-studied tree edit operation is the subtree prune
and regraft (SPR) operation [27] where a subtree of the edited tree is pruned
and regrafted back into the tree at another location. The SPR neighborhood of
T is the set of all trees into which T can be transformed by one SPR operation,
and this neighborhood contains Θ(n2) trees. Further, the best-known algorithm
to compute the path-difference distance between two trees with n leaves requires
Θ(n2) time [30]. Therefore, given an instance of k trees over n different taxa of the
SPR based local search problem, this problem can be näıvely solved by complete
enumeration in Θ(kn4) time, which is the best-known algorithm. However, when
faced with heuristically estimating larger median trees this runtime becomes
prohibitive.
Our Contribution. We introduce the path-difference median tree problem un-
der the classical path-difference distance to synthesize large-scale phylogenetic
trees. To prove its NP-hardness for rooted and unrooted input trees we are us-
ing polynomial time mapping-reductions from the maximum triplet consistency
problem and from the quartet compatibility problem respectively. To solve large-
scale instances of the path-difference median tree problem, we have devised a
standard SPR local search heuristic. For time efficiency, we design a Θ(kn3) time
algorithm for an instance of the local search problem that improves on the best-
known (näıve) solution by a factor of n, where n and k is the size and number of
the input trees of the median tree problem respectively. Finally, we demonstrate
the performance of our new local search heuristic through comparative studies
using empirical data sets.

2 Basics and Preliminaries
Basic definitions. A (phylogenetic) tree T is a rooted full binary tree. We
denote its node set, edge set, leaf set, and root, by V (T), E(T), L(T), and Rt(T)
respectively. Given a node v ∈ V (T), we denote its parent by PaT (v), its set of
children by ChT (v), its sibling by SbT (v), the subtree rooted at v by T (v), and
T |v is the phylogenetic tree that is obtained by pruning T (v) from T . Note that
we identify the leaf set with the respective set of leaf-labels (taxa).

Let L ⊆ L(T) and T ′ be the minimal subtree of T with leaf set L. We define
the leaf-induced subtree T [L] of T to be the tree obtained from T ′ by successively
removing each node of degree two (except for the root) and adjoining its two
neighbors.

Path-difference distance. Given a tree T and two leaves u, v ∈ L(T), let
du,v(T) denote the length in edges of the unique path between u and v in T . Let
d(T) be an associated vector obtained by a fixed ordering of pairs i, j [30], e.g.,
d(T) = (d1,2(T), d1,3(T), . . . , dn−1,n(T)), where n is the number of leaves. Then
the path-difference distance (PDD) between two trees G and S over the same
leaf set is defined as d(G,S) := || d(G)− d(S)||2.

We also define PLM(T) to be the matrix of path-lengths between each two
leaves in T . That is, a matrix of size | L(T)| × | L(T)|, where rows and columns
represent leaves of T , and PLMu,v(T) = du,v(T). Let G and S be trees over the
same leaf set, then we define ∆(G,S) := PLM(G)−PLM(S) to be the matrix of
path-length differences.

3 Path-difference median tree problem

Let P be a set of trees {G1, . . . , Gk}. We define L(P) := ∪ki=1L(Gi) to be the leaf
set of P. A tree S is called a supertree of P, if L(S) = L(P). Further, we extend
the definition of the path-difference distance to a set of trees. Note, we defined
PDD only for two trees over the same leaf set. However, we do not want to enforce
such a restriction on the set of input trees, since it is generally not the case for real
world data. Therefore, in order to compare two trees S andG, where L(G) ⊆ L(S)
we use the minus method [11]. That is, we calculate a distance between G and
the subtree of S induced by L(G): d(S,G) = d(S[L(G)], G). We now define PDD

for an input set P and a supertree S as a sum d(P, S) :=
∑k

i=1 d(Gi, S[L(Gi)]),
which is used to establish the following problem.

Problem 1 (PD median tree (supertree) – decision version).
Instance: a set of input trees P and a real number p;
Question: determine whether there exist a supertree S, such that d(P, S) ≤ p.
3.1 The PD median tree problem is NP-hard.
We show this by a polynomial time reduction from the MaxRTC problem.

Problem 2 (Maximum Compatible Subset of Rooted Triplets – MaxRTC).
Instance: a set of rooted triplets R and an integer 0 ≤ c ≤ |R|;
Question: Is there a subset R′ ⊆ R, such that R′ is compatible and |R′| ≥ c.
A rooted triplet is a (rooted full binary) tree with exactly three leaves. A set of
trees P is called compatible if there exist a supertree T consistent with every
tree in P, and a tree T is consistent with a tree G if T [L(G)] ≡ G.

Theorem 1. The PD median tree problem is NP-hard.

Proof. We map an instance 〈R, c〉 of the MaxRTC problem to an instance
〈R,
√

2(|R|−c)〉 of the PD median tree problem. The MaxRTC problem is known
to be NP-complete [6]. This transformation works due to the following property.
Assume that S is a supertree of a set of rooted triplets R = {T1, . . . , Tk}. Then
we observe that d(S[L(Ti)], Ti) is 0, when S is consistent with Ti, and is

√
2

otherwise. Therefore, d(R,S) =
√

2(|R| − c′), where c′ is the number of triplets
in R, which are consistent with S. That is, there are at least c′ compatible triplets
in R. Now, we can conclude the proof.

(i) If 〈R, c〉 is a yes-instance of the MaxRTC problem, then there exist a tree
S, such that S is consistent with |R′| ≥ c triplets. As we shown above, in
that case d(P, S) ≤

√
2(k − c). Therefore, 〈R,

√
2(|R| − c)〉 is a yes-instance

of the PD median tree problem.
(ii) Clearly, the same argument works in the other direction. �

In practice median trees are sometimes computed for multi-sets of trees.
However, our results, shown for sets of input trees, easily extend to multi-sets.

4 Local search for PD median tree problem

As stated in the introduction, we address the NP-hardness by devising a new
SPR based local search heuristic. Next, we introduce needed definitions.

4.1 SPR-based Local search

Definition 1. Given a node v ∈ V (S)\{Rt(S)}, and a node u ∈ V (S)\(V (S(v))∪
{Pa(v)}), SPRS(v, u) is a tree obtained as follows:
(i) Prune the subtree S(v) by (i) removing the edge {Pa(v), v}, and (ii) removing

Pa(v) by adjoining its parent and child.
(ii) If u is a root of S|v, then a new root w′ is introduced, so that u is a child of

w′. Otherwise, an edge (Pa(u), u) is subdivided by a new node w′.
(iii) Connect the subtree S(v) to the node w′.

In addition, we introduce the following useful notation
SPRS(v) :=

⋃
u SPRS(v, u); SPRS :=

⋃
v,u SPRS(v, u). SPRS is called

an SPR-neighborhood of a tree S, and |SPRS | = O(n2), where n = | L(S)|.
Given a set of input trees P = {G1, . . . , Gk}, the search space in the median

tree problem can be viewed as a graph T , where nodes represent supertrees
of P. There is an edge {S1, S2} in T , if S1 could be transformed to S2 with
a single SPR operation. As was mentioned in the introduction, local search is
designed to terminate at a local minimum of T . More formally, at each iteration
the following problem is solved

Problem 3 (PD local search).
Instance: An input set P and a supertree S;
Find: S′ = arg min

S′∈SPRS

d(P, S′).

Next we describe an algorithm for the PD local search problem that improves
on the best-known näıve algorithm (see Introduction) by a factor of n.

4.2 Local Search based on an SPR semi-structure

Let G ∈ P be a fixed input tree, and let Si be a supertree in the i-th iteration of
the local search. Throughout this section we refer to the restricted tree Si[L(G)]
as S. To reduce the complexity of the näıve algorithm, we exploit a semistructure
of an SPR-neighborhood initially introduced in [8]. Let N := SPRS(v,Rt(S))
for some v ∈ V (S), then SPRN (v) is equivalent to SPRS(v). This property is
essential for the further analysis, which is motivated by the following theorem.

Theorem 2. Given ∆(N,G), d(T,G) is computable in Θ(n) time for any T ∈
SPRS(v) with a single precomputation step of time complexity Θ(n2).

ut

ut-1

ut-2
v

u0

Sb(u)t-1

Sb(u)t

Sb(u)1

Fig. 1: Scheme of the
N = SPRS(v,Rt(S)) tree, depicting
how the leaf set was partitioned to cre-
ate Table 1.

Cv Cut CSb(up)

Cv 0 −t
−2p + 1

+t

Cut −t 0 +1

CSb(up)
−2p + 1

+t
+1 0

Table 1: Note that 1 ≤ p ≤ t. Val-
ues inside the table indicate the dif-
ference in path lengths between leaves
from different subsets, i.e., for i ∈ Cv

and j ∈ Cut : di,j(T) = di,j(N)− t.

This theorem implies that for a fixed input tree G and a fixed prune node
v ∈ V (S) we can compute the PD distance for every T ∈ SPRS(v) in Θ(n2)
time. Therefore, computing d(T,G) for all T ∈ SPRS and all G ∈ P takes
Θ(n3k) time, where k = | P |. This is the time complexity of our algorithm
for the PD local search problem. In the remainder of this section we detail the
precomputation idea and prove Theorem 2.

Consider a tree T := SPRS(v, y), where y ∈ V (S|v), and let (u0, ..., ut) be a
simple path in S|v, where u0 = Rt(S|v) and ut = y. Note, this path is also also
a path in N , since S|v is a subtree of N .

For convenience, let Cu denote L(N(u)) for any u ∈ V (N). Thus, we have
Cv = L(N(v)) = L(S(v)). Table 1 shows a path-length difference matrix PLM(T)−
PLM(N). Using this table, it is possible to derive the difference between d(T,G)
and d(N,G). It was constructed by partitioning the leaf set of S as follows (see
also Figure 1): L(S) = Cv ∪ (CSb(u1) ∪ . . . ∪ CSb(ut)) ∪ Cut

.

In order to explain Table 1 we need to explore how the path between two
leaves changes when regrafting node v. We consider all possibilities for a pair
of leaves i and j (except for the cases, when i and j belong to the same subset
from the table, since the path does not change in that case).

(i) i ∈ Cv, j ∈ Cut
. In N the path between i and j could be denoted by

Ai t (Pa(v), u0, . . . , ut) t Bj . Note that partial paths Ai and Bj are not
changed by the regrafting operation. In T the path between i and j is Ai t
(PaT (v), ut) tBj . The number of edges in the path is decreased by t.

(ii) i ∈ Cv, j ∈ CSb(up), where 1 ≤ p ≤ t. Again, we denote the path between i
and j in N by Ait(Pa(v), u0, . . . , up−1,Sb(up))tBj . Then the corresponding
path in T is Ai t (PaT (v), ut−1, . . . , up, up−1,Sb(up)) t Bj . It is easy to see
that the path length increased by (t− p)− (p− 1).

(iii) i ∈ Cut
, j ∈ CSb(up), where 1 ≤ p ≤ t. We denote a path between i and j

in N by Ai t (ut−1, . . . , up, up−1,Sb(up))tBj . Then the corresponding path

in T is Ai t (PaT (v), ut−1, . . . , up, up−1,Sb(up)) tBj . Exactly one edge was
added to the path (as a result of regrafting v above ut).

(iv) i ∈ CSb(up), j ∈ CSb(uq), where 1 ≤ p, q ≤ t. Clearly, the path between i and
j is not affected by the regrafting operation.

Let A and B be two elements from {Cv, Cut , CSb(ut), . . . , CSb(u1)} (set of
disjoint subsets), and difA,B be the corresponding value according to Table 1.
For convenience we will refer to ∆i,j(N,G) as simply ∆i,j .

d2(T,G)− d2(N,G) =
∑
∀{A,B}

∑
i∈A
j∈B

(∆i,j + difA,B)2 − (∆i,j)
2

=
∑
∀{A,B}

(|A||B|dif2A,B + 2difA,B

∑
i∈A
j∈B

∆i,j).
(1)

Precomputation. The above equation shows that in order to efficiently cal-
culate d(T,G) for an arbitrary T ∈ SPRv(S) with a fixed v, we need to know∑

i∈A
j∈B

∆i,j for every pair of distinct A,B, such that difA,B 6= 0. Note that there

are only O(t) such pairs. Further, we observe that those sums can be exhaustively
precomputed as the following values for each u ∈ V (N).

– BDist(u) :=
∑
i∈Cv
j∈Cu

∆i,j , for any u ∈ V (S|v). This sum is called the Base

Distance (BDist): sum of path-length differences between all pairs of leaves
from a subset Cu and Cv.

– RDist(u) :=
∑
i∈Cu

j∈L(S|v)\Cu

∆i,j , for any u ∈ V (S|v). This sum is called the Re-

maining Distance (RDist): sum of path-length differences between all pairs
of leaves from a subset Cu, and all the other leaves in N (excluding Cv).

Consider any node u ∈ V (S|v). If u is not a leaf, then we denote its children as
c1 and c2. BDist(u) and RDist(u) can be equivalently computed as follows.

– BDist(u) =

BDist(c1) + BDist(c2), p is not a leaf;∑
i∈Cv

∆i,u, otherwise.

– RDist(u) =


RDist(c1) + RDist(c2)− 2 · SDist(c1), p is not a leaf;∑
i∈Cu0

∆i,u, otherwise.

– SDist(c1) = SDist(c2) :=
∑

i∈Cc1
,j∈Cc2

∆i,j (sibling distance).

Time complexity. The precomputation step is divided into three sub-steps
according to the relations for the distances BDist, SDist and RDist. Below we
assess their computation time separately.

– BDist is calculated in constant time for internal nodes and in O(|Cv|) time
for leaves. Therefore, it requires Θ(n2) operations to claculate BDist for all
u ∈ V (N).

– RDist is similar to BDist: it is calculated in constant time for internal nodes
and in O(|Cu0

|) for leaves. Once again, the overall time complexity is Θ(n2).
– SDist is calculated across all siblings, and thus requires the computation of

sums over multiple sub-matrices of ∆. However, these sub-matrices do not
overlap for different pairs of siblings. Hence, the overall time complexity to
compute SDist is O(n2).

After the precomputation step, the sums in Equation 1 can be substituted with
BDist and RDist values in order to calculate d2(T,G) − d2(N,G) in time O(t),
where t ≤ n for any G ∈ SPRS(v). This concludes the proof of Theorem 2.

Unrooted case. The PD median tree problem for unrooted trees is NP-hard,
which follows from a straightforward polynomial time reduction from the NP-
hard quartet compatibility problem [29] (as in the rooted case, we observe that
the PD distance is 0 when all input trees are consistent with a supertree). More-
over, our local search algorithm for rooted trees can be extended to work with
unrooted trees as well. We are describing the key ideas of this algorithm, and
omitting details for brevity. The semi-structure of the SPR-neighborhood can
be exploited in the unrooted case as well: one can root a supertree at an edge
(Pa(v), v), where v is the “prune” node, and traverse the SPR-neighborhood in
the same way as in the rooted case. Table 1 would be slightly changed to account
for the artificial root, though the same precomputation idea is still applicable.

5 Experimental Evaluation

Median tree methods under the path-difference objective have never been studied
before. Therefore, we adhere to a classical evaluation approach by comparing
our median tree heuristic against standard supertree methods with different
objectives [2, 20]. We processed two published baseline phylogenetic datasets,
the Marsupials dataset [7] and the Cetartiodactyla dataset [25]. These datasets
have been actively used for experimental supertree evaluations throughout the
evolutionary community (see, for example, [2, 10,16,28]).

Following the experiments presented in one of the recent supertree papers [16],
we compare our PD local search method against the following supertree methods:
the maximum representation with parsimony (MRP) heuristic [31], the modified
min-cut (MMC) algorithm [22], and the triplet supertree heuristic [16]. MRP
heuristics are addressing the NP-hard MRP problem [20], and are among the
most popular supertree methods in evolutionary biology [4]. For our evaluation
we use the MRP local search heuristic implemented in PAUP* [31] with Tree
Bisection and Reconnection (TBR) branch swapping [16]. The TBR edit opera-
tion is an extension of the SPR operation, where the pruned subtree is allowed
to be re-rooted before regrafting it. The MMC algorithm computes supertrees
(that satisfy certain desirable properties) in polynomial time, which makes this
method especially attractive for large-scale phylogenetic analysis [22]. The triplet
supertree heuristic is a local search heuristic that is addressing the well-studied

NP-hard triplet supertree problem [16]. We are using the triplet heuristic based
on SPR and TBR local searches, called TH(SPR) and TH(TBR) respectively.

Hybrid heuristic. In a classical local search scenario there are two major steps.
In the first step a supertree is constructed incrementally. Typically, the process
is initiated with some t taxa, and an optimal supertree over the chosen taxa is
computed exactly. Here, t is typically small, e.g., three. Next, on each iteration
t new taxa are added to the partial supertree (an optimum among all possible
ways to add t leaves to the tree is picked). The second major step is to run the
actual local search starting with the tree obtained in step one.

Clearly, the first step is rather slow, especially when it is costly to compute
the distance measure for a supertree (as in our case). Even though many ideas
could be suggested to accelerate the first step, we want to emphasize that it is
not necessary to separate the two steps in the first place. That is, the local search
heuristic, which is the main optimization engine, could be applied on every step
of construction of the start tree. It could be argued that SPR-based local search
brings in more flexibility than simply trying to add new taxa to a tree with a
fixed structure. For estimation of PD median trees we implemented this novel
hybrid heuristic using the introduced here local search algorithm.

Results and Discussion. Table 2 summarizes the results that we obtained
from the conducted experiments with our heuristic PDM(SPR) in comparison
with the published results for MMC, MRP, TH(SPR), and TH(TBR) [16]. As
expected, all of the methods stand their ground. The MRP method proves to be
most effective according to the parsimony objective. In addition, MRP supertrees
show the best fit over the input data in terms of our computed MAST-similarity
scores – which could be seen as an “independent” objective in our evaluation.
At the same time, both triplet heuristics, TH(SPR) and TH(TBR), produced
the best supertrees under the triplet similarity objective. As for our method –
PDM(SPR) – it was able to produce best supertrees with regards to the PD
distance.

Data set Method PD score Triplet-sim MAST-sim Pars. score

Marsuplial
158 input trees

272 taxa

MMC 16,670.45 51.73 % 53.4 % 3901
MRP 5,694.59 98.29 % 71.6 % 2274

TH(SPR) 5,866.27 98.99 % 70.2 % 2317
TH(TBR) 5,888.22 98.99 % 70.5 % 2317

PDM(SPR) 4,677.99 68.43 % 63.4 % 3339

Cetartiodactyla
201 input trees

299 taxa

MMC 16,206.17 70.03 % 51.5 % 4929
MRP 6,991.36 95.84 % 64.7 % 2603

TH(SPR) 7,630.03 97.28 % 63.1 % 2754
TH(TBR) 7,591.13 97.28 % 63.0 % 2754

PDM(SPR) 6,051.13 59.49 % 52.2 % 4162

Table 2: Summary of the experimental evaluation. The best scores under each
objective are highlighted in bold.

In order to rigorously assess the results of our heuristic, we should con-
template them with the distribution of the path-difference distance for the two

datasets. However, such distributions, even for a single input tree, remain un-
known [19]. Thus, following the approach from Steel and Penny [30], we estimate
PD distance distributions based on sample data. For each dataset we generated
two collections with 20, 000 random supertrees using PAUP*. One collection
was generated under the uniform binary tree distribution, and the other one was
generated using the Markovian branching process [3]. Then, each collection was
processed to obtain sample datasets with PD distance scores for every generated
supertree. The obtained results are outlined in Figure 2.

Fig. 2: Histograms of the PD distance based on the generated tree samples. All
methods used for the evaluation are marked on each histogram with dotted lines.

The figure makes it clear that even though our heuristic was able to obtain
the best results for the two datasets, MRP and Triplet heuristics still produce
trees that are significantly better than any of the randomly generated trees. As
for the MMC algorithm, it performs much worse under the PD objective than
simply constructing Markovian Binary trees; and, what is more, worse than
drawing random trees from the uniform distribution.

Figure 2 suggests that there exists a positive correlation between the Par-
simony, Triplet-similarity, and PD distance supertree objectives. On the other
hand, according to Table 2, better PD supertrees do not necessarily score well in
terms of parsimony and triplet measures. Thus, the PD heuristic might produce
structurally new phylogenetic trees that have not been analyzed previously.

6 Conclusion
We synthesized the first large-scale median trees under one of the oldest and
widely popular tree distance metrics — the path-difference distance. While we
show that the corresponding PD median tree problem is NP-hard, we demon-
strated that it can be successfully approached by using our new SPR based local

search heuristic. To make the heuristic applicable to real-world phylogenetic
datasets, we have significantly improved its time complexity in comparison to
the best known näıve approach.

Currently, no mainstream supertree method can construct edge-weighted su-
pertrees. However, there has been an increased interest in such tools due to fast
developing databases of time-annotated evolutionary trees (e.g., TimeTree [15]).
The path-difference distance on the other hand, is naturally extendable to ac-
count for edge-weights in phylogenetic trees. The introduced PD heuristic, in
turn, could also be adapted to deal with edge-weighted supertrees. This prop-
erty makes the PD distance even more appealing as a median tree objective and
suggests further investigation in its theoretical and algorithmic means.

7 Acknowledgments

The authors would like to thank the two anonymous reviewers for their con-
structive comments that helped to improve the quality of this work.

References

1. Bansal, M.S., Burleigh, J.G., Eulenstein, O.: Efficient genome-scale phylogenetic
analysis under the duplication-loss and deep coalescence cost models. BMC Bioin-
formatics 11 Suppl 1, S42 (2010)

2. Bansal, M.S., Burleigh, J.G., Eulenstein, O., Fernández-Baca, D.: Robinson-foulds
supertrees. Algorithms for Molecular Biology 5(1), 1–12 (2010)

3. Bean, N.G., Kontoleon, N., Taylor, P.G.: Markovian trees: properties and algo-
rithms. Annals of Operations Research 160(1), 31–50 (2007)

4. Bininda-Emonds, O.R. (ed.): Phylogenetic Supertrees: Combining Information to
Reveal the Tree of Life, Computational Biology, vol. 4. Springer Verlag (2004)

5. Bluis, J., Shin, D.: Nodal distance algorithm: Calculating a phylogenetic tree com-
parison metric. In: 3rd IEEE International Symposium on BioInformatics and Bio-
Engineering (BIBE 2003), 10-12 March 2003, Bethesda, MD, USA. pp. 87–94.
IEEE Computer Society (2003)

6. Bryant, D.: Hunting for trees in binary character sets: efficient algorithms for ex-
traction, enumeration, and optimization. J Comput Biol 3(2), 275–288 (1996)

7. Cardillo, M., Bininda-Emonds, O.R.P., Boakes, E., Purvis, A.: A species-level phy-
logenetic supertree of marsupials. Journal of Zoology 264, 11–31 (2004)

8. Chaudhari, R., Burleigh, G.J., Eulenstein, O.: Efficient Algorithms for Rapid Error
Correction for Gene Tree Reconciliation using Gene Duplications, Gene Duplica-
tion and Loss, and Deep Coalescence. BMC Bioinformatics 13 Suppl 10, S11 (2012)

9. Chaudhary, R., Bansal, M.S., Wehe, A., Fernández-Baca, D., Eulenstein, O.: iGTP:
a software package for large-scale gene tree parsimony analysis. BMC Bioinformat-
ics 11, 574 (2010)

10. Chen, D., Eulenstein, O., Fernández-Baca, D., Burleigh, J.: Improved heuristics
for minimum-flip supertree construction. Evolutionary Bioinformatics 2 (2006)

11. Cotton, J.A., Wilkinson, M.: Majority-rule supertrees. Syst Biol 56(3), 445–452
(2007)

12. Farris, J.: A successive approximations approach to character weighting. System-
atic Zoology 18, 374–385 (1969)

13. Harris, S.R., Cartwright, E.J., Török, M.E., Holden, M.T., Brown, N.M., Ogilvy-
Stuart, A.L., Ellington, M.J., Quail, M.A., Bentley, S.D., Parkhill, J., Peacock,
S.J.: Whole-genome sequencing for analysis of an outbreak of meticillin-resistant
staphylococcus aureus: a descriptive study. Lancet Infect Dis 13(2), 130–6 (2013)

14. Hufbauer, R.A., Marrs, R.A., Jackson, A.K., Sforza, R., Bais, H.P., Vivanco, J.M.,
Carney, S.E.: Population structure, ploidy levels and allelopathy of Centaurea mac-
ulosa (spotted knapweed) and C. diffusa (diffuse knapweed) in North America and
Eurasia. In: Proceedings of the XI International Symposium on Biological Control
of Weeds, Canberra Australia. pp. 121–126. USDA Forest Service. Forest Health
Technology Enterprise Team, Morgantown, WV. (2003)

15. Leaché, A.D.: The timetree of life. S. Blair Hedges and Sudhir Kumar, editors.
Integrative and Comparative Biology 50(1), 141–142 (2010)

16. Lin, H.T., Burleigh, J.G., Eulenstein, O.: Triplet supertree heuristics for the tree
of life. BMC Bioinformatics 10(Suppl 1), S8 (2009)

17. Lin, H.T., Burleigh, J.G., Eulenstein, O.: Consensus properties for the deep coales-
cence problem and their application for scalable tree search. BMC Bioinformatics
13 Suppl 10, S12 (2012)

18. Maddison, W.P., Knowles, L.L.: Inferring phylogeny despite incomplete lineage
sorting. Syst Biol 55(1), 21–30 (2006)

19. Mir, A., Rosselló, F.: The mean value of the squared path-difference distance for
rooted phylogenetic trees. CoRR abs/0906.2470 (2009)

20. Moran, S., Rao, S., Snir, S.: Using semi-definite programming to enhance supertree
resolvability. In: Proceedings of the 5th International Conference on Algorithms in
Bioinformatics. pp. 89–103. WABI’05, Springer-Verlag, Berlin, Heidelberg (2005)

21. Nik-Zainal, S., et al.: The life history of 21 breast cancers. Cell 149(5), 994–1007
(2012)

22. Page, R.D.M.: Modified mincut supertrees. In: Proceedings of the Second In-
ternational Workshop on Algorithms in Bioinformatics. pp. 537–552. WABI ’02,
Springer-Verlag, London, UK, UK (2002)

23. Page, R.D., Holmes, E.: Molecular evolution: a phylogenetic approach. Blackwell
Science (1998)

24. Phipps, J.B.: Dendogram topology. Systematic Zoology 20, 306–308 (1971)
25. Price, S.A., Bininda-Emonds, O.R.P., Gittleman, J.L.: A complete phylogeny of

the whales, dolphins and even-toed hoofed mammals (cetartiodactyla). Biological
Reviews 80(3), 445–473 (2005)

26. Puigbò, P., Garcia-Vallvé, S., McInerney, J.O.: TOPD/FMTS: a new software to
compare phylogenetic trees. Bioinformatics 23(12), 1556–1558 (2007)

27. Semple, C., Steel, M.A.: Phylogenetics. University Press, Oxford (2003)
28. Snir, S., Rao, S.: Quartets maxcut: A divide and conquer quartets algorithm.

IEEE/ACM TCBB 7(4), 704–718 (2010)
29. Steel, M.: The complexity of reconstructing trees from qualitative characters and

subtrees. Journal of Classification 9(1), 91–116 (1992)
30. Steel, M.A., Penny, D.: Distributions of tree comparison metrics - some new results.

Systematic Biology 42(2), 126–141 (1993)
31. Swofford, D.L.: PAUP*. Phylogenetic analysis using parsimony (*and other meth-

ods). Version 4. Sinauer Associates, Sunderland, Massachusetts. (2002)
32. Than, C., Nakhleh, L.: Species tree inference by minimizing deep coalescences.

PLoS Comput Biol 5(9), e1000501 (2009)
33. Williams, W., Clifford, H.: On the Comparison of Two Classifications of the Same

Set of Elements. Taxon 20(4), 519–522 (1971)

