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Abstract
Inference of phylogenetic networks – the evolutionary histories of species involving speciation as
well as reticulation events – has proved to be an extremely challenging problem even for smaller
datasets easily tackled by supertree inference methods. An effective way to boost the scalability
of distance-based supertree methods originates from the Pareto (for clusters) property, which is
a highly desirable property for phylogenetic consensus methods. In particular, one can employ
strict consensus merger algorithms to boost the scalability and accuracy of supertree methods
satisfying Pareto; cf. SuperFine. In this work, we establish a Pareto-like property for phylogenetic
networks. Then we consider the recently introduced RF-Net method that heuristically solves the
so-called RF-Network problem and which was demonstrated to be an efficient and effective tool
for the inference of hybridization and reassortment networks. As our main result, we provide a
constructive proof (entailing an explicit refinement algorithm) that the Pareto property applies to
the RF-Network problem when the solution space is restricted to the popular class of tree-child
networks. This result implies that strict consensus merger strategies, similar to SuperFine, can be
directly applied to boost both accuracy and scalability of RF-Net significantly. Finally, we further
investigate the optimum solutions to the RF-Network problem; in particular, we describe structural
properties of all optimum (tree-child) RF-networks in relation to strict consensus clusters of the
input trees.
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1 Introduction

Inferring evolutionary histories of species is a crucial area of study in the biological sciences [10].
The inference of such histories as phylogenetic trees, while still an immensely challenging
problem, is gradually becoming tractable on the scale of thousand(s) of species genomes [26, 4].

On the other hand, today, it is well known that evolutionary histories of many species
involve complex evolutionary events such as hybridization, reassortment, recombination,
and horizontal gene transfer [14]. In this case, evolutionary histories are modeled using
phylogenetic networks that contain reticulation vertices in addition to classical speciation
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12:2 Consensus Clusters in Robinson-Foulds Reticulation Networks

vertices. Unfortunately, whereas phylogenetic networks potentially represent significantly
more powerful tools than phylogenetic trees, the reticulate evolutionary model is of greater
complexity than the standard speciation model. In this regard, the current state-of-the-art
tools for the estimation of phylogenetic networks cannot yet compete with the inference
methods for trees in terms of accuracy and scalability.

Recently, a novel method for the inference of hybridization and reassortment networks
has been introduced, called RF-Net [17]. RF-Net was shown to outperform its closest
counterparts in terms of scalability and be able to estimate networks with more than 150
taxa credibly. However, there are still significant limitations, particularly in terms of the
maximum tractable number of reticulation vertices.

RF-Net follows the extended hybridization framework established in [17]. More precisely,
the classical hybridization framework, formulated in the influential work of Baroni et al. [2],
seeks a network that would display each of the input phylogenetic trees exactly. The extended
framework then additionally accounts for errors that are typically present in input trees for
supertree/super-network studies [3, 25]. That is, it defines a cost of embedding an input
tree into a candidate network that measures how close that input tree is to be displayed
in the network. More formally, the embedding cost is defined as the minimum distance
between the input tree and each tree displayed in the candidate network (Figure 1 illustrates
the concept of displayed trees). Whereas, generally, any established distance measurement
for phylogenetic trees can be used to define the embedding cost, RF-Net uses the popular
Robinson-Foulds (RF) metric [24]. A related concept was also explored by Yu et al. [29],
where the parsimonious ILS principle is combined with the hybridization framework.

Given a collection of input trees, RF-Net attempts to solve the problem of finding a
phylogenetic network with at most r reticulation vertices that minimizes the overall embedding
cost of the input trees, i.e., the overall sum of the individual embedding costs, as well as
the number of reticulations. We refer to this problem as the RF-network problem. The
RF-network problem is NP-hard [17], and it is similar to the standard supertree (median
tree) problem formulations that seek supertrees minimizing the overall distance towards the
input trees. Such distance-based supertree methods are widely used for a task of large-scale
species tree reconstruction [3]. For example, ASTRAL, a popular supertree software package,
seeks a tree minimizing the quartet distance towards the input trees [19]. Further, RF-based
supertree methods, e.g. [1, 27], as well as gene tree parsimony (GTP) supertree methods,
e.g., [9, 12], have been successfully applied by the phylogenetic community (cf. [11, 22]).

One of the most important properties for the distance-based supertree methods is the
so-called Pareto for clusters 1 property [23]. Pareto for clusters is a highly desired property,
both from theoretical as well as application perspectives [6, 20]. This property was introduced
in the context of consensus methods that seek to “summarize” a collection of input trees over
the same species set. A consensus method is Pareto if every cluster that appears in all input
trees (a strict consensus cluster) also appears in the consensus of these trees obtained by
that method. This notion was then naturally adopted for distance-based supertree methods
when restricted to the consensus setting (i.e., input trees have the same leaf-sets) [15]. Given
that there could be multiple optimum solutions to a distance-based supertree problem, a
respective distance measurement is said to (i) satisfy Pareto if each optimum solution contains
all the strict consensus clusters from the input trees and (ii) satisfy weak Pareto if at least
one optimum solution has that property [21]. If a distance measurement satisfies (weak)
Pareto then the respective supertree problem, in a consensus setting, can be solved using a

1 This Pareto property introduced by Neumann [23] in the context of phylogenetic consensus methods is
not to be confused with the Pareto efficiency/optimality term originating from the field of economics [18].
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parameterized approach, where, first, a strict consensus tree of the input trees is constructed,
and then each polytomy in the strict consensus tree is resolved using the original supertree
method. In case the input trees are relatively similar, this approach yields a much more
efficient and accurate supertree method [21].

Typically, however, the input trees can be unrooted and can have incomplete sets of
taxa. In this case, the scalability boost can be achieved using the strict consensus merger
(SCM) methods [13, 26]. Such strategy was first formulated and evaluated by Swenson
et al. [26]; their method, SuperFine, was shown to improve the scalability and accuracy of
supertree methods. Generally, any distance-based supertree method with the respective
distance measurement satisfying at least weak Pareto can largely benefit from using SCM
algorithms. For example, recently, the NP-hard gene duplication supertree problem (GD) [16]
was efficiently and effectively approached [20] by combining the greedy SCM method [13] with
the exact dynamic programming GD solution [8] and the popular GD heuristic, DupTree [28].

Our contribution. In this work, we establish a Pareto-like property in the context of
phylogenetic networks and prove that the Robinson-Foulds embedding cost satisfies it. This
result immediately implies that SCM methods can be used to improve the scalability and
accuracy of the RF-Net method significantly. We demonstrate this result for the commonly
used (restricted) class of networks called tree-child networks [7].

More precisely, we define the notion of C-separated networks for some cluster C. A
network is C-separated if one can remove a single edge (u, v) from a network and obtain two
disconnected subnetworks/subgraphs, such that the subnetwork rooted at v has the leaf-set
C. For example, the network N from Figure 1 is {b, c}-separated, but not {e, b, c}-separated.
Intuitively, this notion implies that the evolutionary history of the species in C (up to their
common ancestor) is not inter-related with lineages of any other species in the network.

Founded on this notion, our main result is as follows: when the solution space is
constrained to the class of tree-child networks, there always exists an optimum RF-network
that is C-separated for every strict consensus cluster C. Adopting the above-discussed
terminology for distance-based supertree methods, this result implies that the RF embedding
cost satisfies weak Pareto for tree-child networks. It is important to note that, since our
proof is by construction, it explicitly provides an algorithm that can bring a non-C-separated
network to the C-separated form with the same or an improved overall embedding cost.
To achieve our result, we introduce three edit operations on networks and prove that they
preserve specific non-trivial properties. Then we use these operations to design the said
algorithm and complete the proof.

Further, we describe conditions for the existence of non-C-separated optimum RF-
networks. We prove that such networks can appear only due to uncertainty in the ordering of
some reticulation events that is not resolved by the input trees. That way, when uncertainty
is not present, the RF embedding cost satisfies (strong) Pareto for tree-child networks,
rather than weak Pareto. In fact, we prove that even if for some collection of input trees a
non-C-separated optimum RF-network N exists, it must be equivalent to another RF-network
N ′ up to a reordering of reticulation events (this notion is formally defined in Section 3.2),
such that N ′ is both optimum and C-separated.

2 Preliminaries

A (phylogenetic) network is a directed acyclic graph (DAG) with a designated root and with
all other vertices either of in-degree one and out-degree two (tree vertices), in-degree two
and out-degree one (reticulation vertices), or in-degree one and out-degree zero (leaves). All
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Figure 1 An example of tree T displayed in network N with one reticulation vertex, r. T is
displayed in N by removing the reticulation edge (p2, r) and obtaining a subdivision N(T ).

leaves are bijectively labeled by a label-set X and are identified with the elements of X. For
convenience, networks are planted, i.e., the root has in-degree zero and out-degree one. For
a network N the root and leaves are denoted by ρ(N) and L(N) respectively. For every
vertex v we denote the set of children, parent(s), and sibling(s) by Ch(v), Pa(v), and Sb(v)
respectively. Note that if v is the child of a reticulation w then, we define Sb(v) to be the
two siblings of w.

We distinguish reticulation edges – edges entering a recitulation vertex – and tree edges –
edges entering a tree vertex. A tree-path is a directed path that consists of tree edges. We say
that vertex v has a tree-path to vertex w if either v = w or there is a tree-path from v to w.

A vertex v is a descendant of w if there is a directed path from w to v (we consider each
vertex to be a descendant of itself); w is also called an ancestor of v. Alternatively, we say
that v is below w or w is above v. A (hardwired) cluster of vertex v, denoted by Cv, is the
set of all leaves that are descendants of v. Generally, we call any set of leaves a cluster.

A (phylogenetic) tree is a network with no reticulation vertices. A least common ancestor
(LCA) of two vertices v, w in a tree, denoted by lca(v, w), is the lowest vertex x such that v
and w are descendants of x. Two clusters (leaf-sets) C1 and C2 are called compatible if there
exists a tree that contains both of them. Equivalently, the clusters are compatible if either
C1 ⊆ C2, C2 ⊆ C1, or C1 ∩ C2 = ∅.

Displayed trees. A tree T is displayed in a network N (with the same leaf set), if one
can remove exactly one reticulation edge from each reticulation vertex, then remove all
potentially appearing non-labeled vertices with out-degree zero, and obtain a subdivision of
T – denoted N(T ). See an example in Figure 1. We say that an edge of a network is used to
display tree T if there is a way to obtain such subdivision of T without removing this edge.
Note that in general there could be several ways to display tree T .

Tree-child networks. A network is called tree-child if each vertex has at least one outgoing
tree edge. It is easy to see that each vertex in a tree-child network must have a tree-path
going to some leaf. This is a crucial property that we will employ in this work.

For the convenience of further discussion, we define a surjective mapping from the vertices
of a tree-child network N , denoted here VN , to the vertices of a tree T displayed in N . Let us
fix a way to display T in N . It is not difficult to observe that for a tree-child network removing
reticulation edges in order to display a tree will not result in out-degree 0 vertices. That
is, the fixed subdivision N(T ) of T contains all vertices of N . Since N(T ) is a subdivision
of T , each vertex w from VN that has two children in N(T ) must have a unique equivalent
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in T . We then map each such w to the corresponding equivalent vertex in T . Further, we
map leaves of N to the leaves of T with the same label. Finally, for each v in VN that has
exactly one child in N(T ), let w denote the highest descendant of v in N(T ) that was already
mapped (i.e., w is either a leaf or has two children); we then map v to the same vertex in T
that w is mapped to. For example, in Figure 1 vertices a and p2 from N are both mapped
to leaf a of T .

We then say that a vertex v ∈ N corresponds to vertex v′ ∈ T if v is mapped to v′.

Embedding cost. We define the cost of embedding a tree T in a network N on the same
leaf set using the standard Robinson-Foulds (RF) distance [24]. The cost should be zero,
when the tree is displayed in the network and positive otherwise. Then the cost is defined as
follows: let PN be a set of all trees displayed in N , then

δ(T,N) := min
S∈PN

RF (T, S),

where RF (T, S) is the Robinson-Foulds (cluster) distance defined as the size of the symmetric
difference between the cluster representations of two trees.

A tree S, displayed in N , that has the minimum RF distance to T is called an embedding
of T (in N). Note that in general T can have multiple embeddings.

3 Consensus clusters in networks

We now establish a definition central to this work.

I Definition 1 (C-separated networks). Given a cluster C, network N is called C-separated
if it contains an edge (u, v) such that removing this edge disconnects the network into two
networks (components) N1 and N2 with

L(N1) = C; L(N2) = L(N) \ C;
and no edges going across the components in the underlying undirected graph.

For example, network N from Figure 1 is {b, c}-separated.
Let T be a set of trees over the same leaf set. A cluster C is said to be a consensus

cluster (of T ) if for each T ∈ T there is a vertex v such that Cv = C.
Given a network N over the leaf set as T , we define the distance between T and N

as follows:

d(T , N) := we ·
∑
T∈T

δ(T,N) + wr ·R(N),

where R(N) is the number of reticulation vertices in N and we, wr > 0 are integer coefficients
that weigh the overall embedding cost and the number of reticulations respectively. Note
that, for convenience, we define the distance slightly differently from the original definition
in [17], where a limit on the number of reticulations was given instead of a weight; however,
it does not affect the results stated in this work.

3.1 Consensus clusters in embeddings
We now formulate our core result. To prove it we introduce our main machinery that is also
used later to demonstrate stronger results.

I Theorem 2. Let N be a tree-child network with the minimum d(T , N) distance; then for
each consensus cluster C of T and each Ti ∈ T , every embedding of Ti in N has cluster C.

The remainder of the section is dedicated to the proof of the theorem.

WABI 2019
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Proof strategy. Assume, for the purpose of contradiction, that an embedding of some Ti,
Si ∈ PN , does not contain a consensus cluster C. Observe that this implies that N is not
C-separated, since each tree displayed in a C-separated network must have cluster C.

We are going to transform N into a C-separated network with a smaller distance to T .
In order to do that, we define three transformations on networks that preserve displayed
clusters that are compatible with C.

Formally, the transformations should satisfy the property defined in Definition 3.

I Definition 3 (C-compatible transformation). A network transformation operation that can
transform N into a network N ′ is said to be C-compatible if for each tree T displayed in
N there exists a tree T ′ displayed in N ′, such that T ′ contains all clusters of T that are
compatible with C.

Let VC be the set of vertices in N that have a tree-path to some leaf in C. For convenience
we classify the tree vertices in VC as follows.

I Definition 4 (VC vertices classification). A tree vertex v ∈ VC is exactly of one of the
following types:

Type 1: if v is a leaf; or if children of v both belong to VC and both children are tree
vertices.
Type 2: if both children of v belong to VC but one of the children is a reticulation vertex.
Type 3: If only one child of v, u1, belongs to VC , while the other, u2, does not. Note that
in this case u1 has to be a tree vertex, while u2 could be a tree vertex or a reticulation vertex.

We now define our first network rearrangement operation and prove that it is C-compatible.

I Definition 5 (Network transformation T1). If N contains an edge (w, z) such that w, z ∈ VC ,
w, z are tree vertices, w is of Type 2, and z is of Type 3 then transformation T1 proceeds
as follows:
(i) Let c denote the sibling of z and u denote the child of z such that u 6∈ VC ;
(ii) Remove edges (w, c) and (z, u) and add edges (w, u) and (z, c).

That is, the transformation swaps specific children of z and w. Note that z becomes a Type 2
vertex and w – Type 3; that way T1 “moves” a Type 2 vertex down and a Type 3 vertex up.
See the illustration in Figure 2a.

We now prove that this transformation could not increase the embedding distance of an
input tree with cluster C to the network.

I Lemma 6. T1 is C-compatible.

Proof. Assume that T1 was performed as depicted in Figure 2a. Note that, by definition, z
and c belong to VC and therefore have tree-paths to some leaves a and b in C respectively
(as shown in the figure as well). On the other hand, u 6∈ VC and therefore u has a tree-path
to some d 6∈ C (it could be that u = d and/or c = b).

Consider some T displayed in N . We need to show that exists T ′ displayed in N ′ that
contains all clusters of T compatible with C. First of all, observe that if T can be displayed
in N by removing either (or both) of the edges (w, c) and (z, u) then T is also displayed in
N ′ and the statement is trivially true.

Otherwise, let x denote lcaT (a, d) (as shown in Figure 2b). Since each edge (w, z), (z, u),
and (w, c) are used for displaying T (as well as all edges on the tree-paths shown in Figure 2a,
since they are tree edges and cannot be removed) then vertex z in N should correspond to x
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z
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N

a ∈ C d 6∈ C b ∈ C

z

w

c

u
N′

a db

(a) T1 transformation.
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a d b

T′
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(b) Displayed tree transformation.

Figure 2 (a): A network N transformed into network N ′ via transformation T1 as per Definition 5;
waved lines indicate tree-paths to leaves. (b): A respective transformation of a tree T displayed in
N (assuming that both edges (z, u) and (w, c) are used to display T ) to a tree T ′ displayed in N ′.

y

x

w

v
N

a ∈ C b ∈ Cd 6∈ C

y

x

w

N′

a bd

z

Figure 3 An illustration of transformation T2. Network N is transformed into N ′. Potentially
empty tree-paths are shown via waved lines.

in T . Further, vertex c should correspond to the sibling of x, v3. Therefore, v3 should have
leaf b below it. It is then not difficult to see that a tree T ′ obtained by swapping subtrees
rooted at v3 and v2 is displayed in N ′ (see Figure 2b).

Finally, observe that T differs from T ′ only by one cluster; namely, Cx, which is not
present in T ′. However, Cx is not compatible with C, since (i) Cx contains a ∈ C and d 6∈ C
and (ii) C 6⊂ Cx because b 6∈ Cx. J

We now define two more C-compatible rearrangement operations.

I Definition 7 (Network transformations T2 and T3). Let x be a tree vertex in VC of Type 2
or Type 1 such that there is no tree vertex above x of Type 2 or 1 with a path to x. Further,
let y be the highest vertex of Type 1 with a tree-path from x (note that y could be equal to x);
we then require that there is no vertex of Type 3 on the path from x to y. The transformations
are defined as follows:
T2. Given edge (v, w), such that v ∈ VC , w 6∈ VC , and v is not an ancestor of x:
(i) remove edge (v, w) and contract v;
(ii) subdivide (Pa(x), x) with a new vertex z and add edge (z, w).

T3. Same as T2 with the difference that v 6∈ VC , while w ∈ VC , and w is not an ancestor of
x (note that v could be an ancestor of x).

I Remark 8. Note that T1, T2, and T3 could be seen as specifically constrained versions of
the subnet prune and regraft operation (SNPR) defined and studied by Bordewich et al. [5].

WABI 2019
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Figure 4 Three possible scenarios – (a), (b), and (c) – for a tree T displayed in N . Tree T ′

displayed in a transformed network N ′ (as shown in Figure 3) can be obtained in all three cases by
regrafting the subtree rooted at w′ just above vertex x′.

I Lemma 9. T2 and T3 are C-compatible.

Proof. The proofs for T2 and T3 are similar; therefore, we provide a proof for T2 only. Let
N be transformed to N ′ as depicted in Figure 3.

Consider some T displayed in N . We need to show that exists T ′ displayed in N ′ that
contains all clusters of T compatible with C. Similarly to the proof of Lemma 6, observe
that if (v, w) is a a reticulation edge and there exists a way to display T in N without using
this edge, then T is displayed in N ′ as well and the statement holds. We now fix a way to
display T in N . Let x′ then denote the vertex in T such that x (from N) corresponds to
x′. Further, let v′ = lcaT (b, d) be the vertex such that v corresponds to v′ and let w′ be the
child of v′ such that w corresponds to w′. Observe that a tree T ′ displayed in N ′ is obtained
from T by (i) removing edge (v′, w′) and suppressing vertex v′ and (ii) subdividing edge
(Pa(x′), x′) with a new vertex z′ and adding an edge (z′, v′). That is, subtree rooted at w′ is
regrafted above x′.

We now distinguish three cases for our proof depending on the location of x′ relative to v′
in T . Let p denote lcaT (v′, x′). Then the three cases are as follows (see also the illustration
of these cases in Figure 4):
(a) x′ is a child of p (see Figure 4(a)). Then T ′ does not have only those clusters of T

that correspond to the intermediate vertices on the path from p to w′. However, each
such cluster could not be compatible with C, since it contains d 6∈ C and b ∈ C, but
does not contain a ∈ C (that is, it is neither a subset nor a superset of C, nor it is
disjoint from C).

(b) There is at least one vertex on the path from p to x′ (see Figure 4(b)). Let q′ and s′
denote the parent and sibling of x′ respectively (as depicted on the figure). We argue
that there must exist leaf e 6∈ C below s′.
Consider a fixed subdivision N(T ) and let t be the lowest ancestor of x in N(T ) with
two children (that is, t corresponds to t′). It is not difficult to observe that there could
be at most one reticulation edge on the path from t to x in N(T ) and that edge has to
originate from t (due to the tree-child property). Recall now that there is no vertex of
Type 1 or 2 above x.
If there is a reticulation edge on the path from t to x, let s denote the child of t that is a
tree vertex. Note that s could not belong to VC , since in that case t would be a vertex of
Type 2 (note that the other child of t, that is a reticulation, must have a tree-path to x
and therefore a tree-path to a ∈ C – that is, it belongs to VC). Hence, there exists e 6∈ C
with a tree-path from s. Given that s corresponds to s′ in T , leaf e must be present
below s′ as well.
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Further, if there is no reticulation edge on the path from t to x, then s, defined as the
child of t that is not on this path, is not in VC as well. This is the case, since otherwise t
would be a vertex of Type 1 or 2. Therefore, leaf e exists in that case as well.
We use these observations to finish the proof for (b). Note that tree T ′ does not have
the clusters of T that correspond to the intermediate vertices on the paths from p to w′
and from p to x′. However, using the argument similar to (a), it is not difficult to see
that none of these clusters is compatible with C.

(c) p = x′ (see Figure 4(c)). Let t′ be the child of x′ that is not an ancestor of v′. To prove
that the lemma holds in that case as well, we are going to show that there must exist
leaf f ∈ C below t′. Note that f could be equal to a.
Consider a fixed subdivision N(T ) and let u be the vertex in N(T ) that corresponds to
x′ and has two children. Observe that by our constraints u could be any vertex on the
path from x to y (including x and y). Therefore, by the constraints in the definition of
T2, u must be of Type 2 or 1 and hence both its children must be in VC . Clearly, one of
the children of u corresponds to t′ and therefore such leaf f must exist.
Similarly to (a), tree T ′ does not contain only those clusters of T that correspond to the
intermediate vertices on the path from x′ to w′. It is then not difficult to see that these
clusters are not compatible with C (via the same argument as in (a)).

These cases cover all possible scenarios, since by constraints given in Definition 7 v′
cannot be an ancestor of x′. Note that for transformation T3 such a case (i.e., v′ is an
ancestor of x′) is possible; however, using the same type of arguments as above, it is not
difficult to check that for this case C-compatibility is preserved as well. J

I Lemma 10. A not C-separated network N can be transformed into a C-separated network
N ′ only using operations T1, T2, and T3.

Proof. Consider the set of connected components (in the undirected sense) induced by the
vertices in VC . Let A ∈ C be such component; that is, all vertices in A are in VC and every
edge incident to A connects to a vertex that is not in VC . We are going to potentially exclude
some “redundant” vertices from A, while keeping it connected. Let v be a maximal vertex in
A, i.e., its parent(s) is(are) not in A. If v has exactly one child that is in A, then exclude v
from set A. Keep iterating this procedure until all maximal vertices in A are either leaves or
have both children in A.

Now, let C′ be the set of components obtained from C by performing the described above
pruning procedure on each component. Note that after the pruning all maximal vertices in
C′ components are tree-vertices of Type 1 or 2.

Next, we are going to use transformations T1, T2, and T3 on N in order to aggregate all
components in C′ together and separate them from the rest of the network.

For each A ∈ C′ let I(A) be the set of vertices in A that are incident to an edge outside
of A. Note that I(A) includes all maximal vertices in A. Further, define I(C′) := ∪A∈C′I(A).
Since N is a DAG, there a vertex x in I(C′), such that no other vertex in this set is an
ancestor of x. Clearly, x must be a maximal vertex of some component in C′.

Assume that x is a vertex of Type 2 (if x is of Type 1, then this step is not needed). Let
y be the highest vertex of Type 1 with a tree path from x. Consider now all vertices on
the tree path from x to y (excluding y); let us denote these vertices as (v1 = x, v2, . . . , vk).
Note that each vi is either of Type 2 or 3. Transformation T1 then allows us to rearrange
the types of these vertices in the way that there will be an index 1 ≤ j ≤ k such that for all
i ≥ j, vi is a Type 2 vertex and for all i < j, vi is a Type 3 vertex. That way we modified
the component Cx ∈ C′ that contains x. Since v1, . . . , vj−1 (if j > 1) vertices have only one
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child in VC by the definition of Type 3 vertices, then applying the pruning procedure again
will exclude v1, . . . , vj−1 from Cx. Therefore, we re-define x := vj . Observe that x is still a
vertex with the property that no other vertex in I(C′) is an ancestor of x. Further, there is
no vertex of Type 3 between x and y.

Consider now all edges of type (v, w), such that v is in some component A ∈ C′ and
w 6∈ VC . We perform transformation T2 (in any order) by reconnecting each such w above
x. Further, consider all maximal vertices in C′ except for x, we use T3 to reconnect those
vertices above x (note that after each such operation T3 we need to re-assign x = Pa(x)).
It is not difficult to see that as the result of this procedure all vertices in VC now lie in the
same connected component. Finally, consider all reticulation vertices v in that component,
such that one of the edges (w, v) is outside of the component. We perform T3 to relocate
the source of such reticulation edges above x. J

The proof of Theorem 2 then follows from the above results. That is, Lemma 10 allows us
to obtain a C-separated network N ′ with the property that for each Sj displayed in N exists
S′j displayed in N ′, such that S′j has all the clusters of Sj compatible with C (guaranteed by
Lemmas 6 and 9). Note now that all clusters in input trees Tj are compatible with C; hence,
RF (Tj , S

′
j) ≤ RF (Tj , Sj). Moreover, we assumed in the beginning that Si does not contain

C, while the respective tree S′i displayed in N ′ must contain it. Therefore:

d(T , N ′) < d(T , N).

3.2 Consensus clusters in RF-networks
Theorem 2 says that for a tree-child network N with minimum d(T , N) distance (for
convenience, we refer to such networks as minimum RF-networks), each embedding of the
input trees must contain all the consensus clusters. While this does not directly imply that
each minimum RF-network is C-separated for each consensus cluster, it is not difficult to
observe that at least one minimum RF-network has this property.

I Theorem 11. For a collection of trees T there exists a minimum RF-network N such that
N is C-separated for each consensus cluster C of T .

Proof. Take any minimum RF-network N . If N is not C-separated for some consensus
cluster C, the transformations T1-T3 defined in the previous section can be used to bring
N to the C-separated form (using the procedure from the proof of Lemma 10). As was
demonstrated, T1-T3 do not increase the embedding distance for any T ∈ T ; thus the
resulting network N ′ is also a minimum RF-network.

Further, it is not difficult to observe that if N is C1-separated and the procedure from
Lemma 10 is used to make it C2-separated – where C1 and C2 are two distinct compatible
clusters – the resulting network will remain C1-separated. Hence, the theorem holds. J

While this theorem has important implications for practitioners on its own, we now show
a much stronger result claiming that all minimum RF-networks are “almost” C-separated
for each consensus cluster C. More precisely, we show that a minimum RF-network is not
C-separated only if there is uncertainty induced by the set of input trees.

I Definition 12. We say that two networks N1 and N2 are equivalent up to an ordering
of reticulation events, if there is a tree-path (u1, . . . , uk) in N1 such that each ui has one
reticulation child and N2 can be obtained from N1 by re-ordering the vertices on that path along
with their outgoing reticulation edges. That is, N2 can be obtained from N1 by transformations
similar to T1.
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I Theorem 13. Let N be a tree-child network that displays a set of trees Q with the minimal
number of reticulations (i.e., if at least one reticulation edge is removed from N , it will not
display at least one of the trees from Q). Then for a consensus cluster C of Q either N is
C-separated or N is equivalent to a C-separated network N ′ up to an ordering of reticulation
events, such that N ′ displays all trees from Q as well.

The proof is omitted for brevity.
Using Theorem 2 we obtain the following corollary.

I Corollary 14. Given an input tree-set T , consider a minimum RF-network N for T that
is not C-separated for some consensus cluster C. Let Q be the set of all embeddings for all
trees T ∈ T . Then there exists a C-separated minimum RF-network N ′ that displays each
tree in Q and N ′ is equivalent to N up to an ordering of reticulation events.

This corollary implies that a minimum RF-network is not C-separated only if there is
uncertainty in the ordering of some reticulation events that is not resolved by the embeddings
of the input trees.

4 Conclusion

We make the first step towards boosting the scalability of methods for the inference of
hybridization and reassortment networks. We establish a Pareto-like property for phylogenetic
networks and prove that the recently introduced RF embedding cost satisfies it for tree-child
networks. This result allows one to use strict consensus merger strategies to significantly
magnify the scalability of the RF-Net method, particularly, when input trees are relatively
similar. Our results arise from studying the structure of optimum tree-child RF-Networks in
relation to the strict consensus clusters from the input trees. We anticipate that future work
would shed light on whether the Pareto properties that we discovered in this work could be
generalized to other classes of networks, e.g., reticulation-visible networks.
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