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Abstract. The classical Duplication-Loss-Coalescence parsimony model
(DLC-model) is a powerful tool when studying the complex evolutionary
scenarios of simultaneous duplication-loss and deep coalescence events in
evolutionary histories of gene families. However, inferring such scenarios
is an intrinsically difficult problem and, therefore, prohibitive for larger
gene families typically occurring in practice. To overcome this stringent
limitation, we make the first step by describing a non-trivial and flex-
ible Integer Linear Programming (ILP) formulation for inferring DLC
evolutionary scenarios. To make the DLC-model more practical, we then
introduce two sensibly constrained versions of the model and describe
two respectively modified versions of our ILP formulation reflecting these
constraints. Using a simulation study, we showcase that our constrained
ILP formulation computes evolutionary scenarios that are substantially
larger than the scenarios computable under our original ILP formulation
and DLCPar. Further, scenarios computed under our constrained DLC-
model are overall remarkably accurate when compared to corresponding
scenarios under the original DLC-model.
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1 Introduction

Reconstructing evolutionary histories of gene families, or gene trees, is of central
importance for the understanding of gene and protein function. Gene trees make
comparative and investigative studies possible that illuminate relationships be-
tween the structure and function among orthologous groups of genes, and are
an indispensable tool for assessing the functional diversity and specificness of
biological interlinkage for genes within the same family [1, 9, 11,15,16].

Crucial for understanding evolutionary histories of gene families (gene trees)
is contemplating them against a respective species phylogeny; i.e., the evolution-
ary history of species that host(ed) the genes under consideration. This approach
is known as gene tree reconciliation, and it can directly reveal the most valuable
points of interest, such as (i) gene duplication events, (ii) gene loss events, and



(iii) deep coalescence or incomplete lineage sorting events (which appear as a
result of a genetic polymorphism surviving speciation).

Traditional tree reconciliation approaches, while computationally efficient,
are rather limited in practice, as they either only account for duplication and
loss events, or, on the other hand, only for deep coalescence events [7, 12, 19].
Beyond the traditional approaches, recently, a robust unified duplication-loss-
coalescence (DLC) approach has been developed that simultaneously accounts
for duplications, losses, and deep coalescence events. In particular, Rasmussen
and Kellis [17] originally developed a rigorous statistical model referred to as
DLCoal. Then a computationally more feasible parsimony framework, which we
refer to here as DLC-model was developed by Wu et al. [20]. That is, DLC-model
is a discrete version of the DLCoal model, and it was shown to be very effective
in practice in terms of identification of ortholog/paralog relations and accurate
inference of the duplication and loss events. Wu et al. additionally presented
an optimized strategy for enumerating possible reconciliation scenarios and a
dynamic programming solution to find the optimum reconciliation cost; this
algorithm is known as DLCPar.

While it has been demonstrated that DLC-model is computationally more
feasible when compared to DLCoal, the exact DLCPar algorithm is still only
applicable to reconciliation problems involving less than 200 genes. Limiting
evolutionary studies to such a small number of genes is highly restrictive in
practice, where frequently gene families with thousands of genes and hundreds
of host species appear [10]. Further, the DLCPar algorithm is not scalable due
to its exponential runtime [3]. Naturally, there is a demand for novel models
that are (i) efficiently computable and (ii) comparable to DLCPar in terms of
its accuracy.

In this work, we present a non-trivial and flexible integer linear programming
(ILP) formulation of the DLC-model optimization problem. Then we formulate
two novel and constrained DLC-models, and use our ILP formulation to vali-
date these constrained models. That is, our models have smaller solution space
and, therefore, are more efficiently computable than the original DLC-model.
The validation is performed via a comprehensive simulation study with realistic
parameters derived from a real-world dataset. The simulations demonstrate that
both our models are applicable to larger datasets than DLCPar. Moreover, one
of the models, despite the constraints, almost always provides the same recon-
ciliation cost as the unconstrained algorithms.

Related work. In recent years, there has been an increased interest in phylo-
genetic methods involving simultaneous modeling of duplication, loss, and deep
coalescence events [6, 18]. For example, recently, an approach for co-estimation
of the gene trees and the respective species tree based on the DLCoal model
was presented [5]. Further, Chen et al. [2] presented a parsimony framework for
the reconciliation of a gene tree with a species tree by simultaneously modeling
DLC events as well as horizontal gene transfer events. While promising, their
approach remains computationally challenging.



Note that to the best of our knowledge, no models were proposed that would
be more efficiently computable than DLC-model but be comparable with it in
terms of effectiveness.
Our contribution. We developed a flexible ILP formulation that solves the
DLCPar optimization problem. During the development of this formulation, we
observed formal issues with the original definition of the DLC-model in [20].
Consequently, in this work, we also present corrected and improved model defi-
nitions, which are equivalent to the Wu et al. model. For example, we corrected
problems with the definition of a partial order on gene tree nodes, which could
otherwise lead to incorrect scoring of deep coalescence events (see Section 2 for
the full updated model definitions).

Further, the ILP formulation enabled us to test the viability of a constrained
DLC-model, which we present in this work. In particular, we observed that the
advanced time complexity of DLCPar originates from allowing the duplications
to appear at any edge of the gene tree, even if there is no direct “evidence” for
such occurrences. While this flexibility allows accounting for all feasible DLC sce-
narios, we show that constraining the duplication locations to those with direct
evidence of duplications will enable one to dramatically improve the efficiency
of computing optimum reconciliations (without losing the accuracy).

To study the performance of the ILP formulation and test our constrained
models, we designed a coherent simulation study with parameters derived from
the 16 fungi dataset [17], which became a standard for multi-locus simula-
tions [4,14,20]. We compared the runtimes of the unconstrained ILP (DLCPar-
ILP), the constrained ILPs, and the DLCPar algorithm by Wu et al. While we
observed that DLCPar was generally faster than DLCPar-ILP there were multi-
ple instances where DLCPar-ILP was able to compute optimum reconciliations,
whereas DLCPar failed. Out of 30 instances, when DLCPar failed, DLCPar-ILP
was able to provide an optimum in 17 cases. Therefore, we suggest using those
two methods as complements of each other. Further, an advantage of using ILPs,
is that one can terminate an ILP solver early, but still get a good approximation
of the optimum reconciliation cost due to the intricate optimization algorithms
used by ILP solvers.

Finally, the constrained ILP models proved to be efficient even on larger
datasets with more than 200 genes, where DLCPar and DLCPar-ILP failed.
Moreover, we observed that one of our constrained models was accurate in
98.17% of instances.

2 Model Formulation

We use definitions and terminology similar to [20], but modify them for improved
clarity and correctness.

A (phylogenetic) tree T = (V (T ), E(T )) is a rooted binary tree, where V (T )
and E(T ) denote the set of nodes and the set of directed edges (u, v), respectively.
Leaves of a phylogenetic tree are labeled by species names. By L(T ) we denote the
set of leaves (labels) and by I(T ) the set of internal nodes of T , i.e., V (T )\L(T ).



Let r(T ) denote the root node. By V̇ (T ) we denote the set V (T ) \ {r(T )}. For
a node v, c(v) is the set of children of v (note that c(v) is empty if v is a leaf),
p(v) is the parent of v, and e(v) denotes the branch (p(v), v). Let T (v) be the
(maximal) subtree of T rooted at v. Further, by clu(v) we denote the species
labels below v.

Let ≤T be the partial order on V (T ), such that u ≤T v if and only if u
is on the path between r(T ) and v, inclusively. For a non-empty set of nodes
b ⊆ V (T ), let lcaT (b) be the least common ancestor of b in T .

A species tree S represents the relationships among a group of species, while
a gene tree G depicts the evolutionary history of a set of genes samples from
these species. To represent the correspondence between these biological entities,
we define a leaf mapping Le : L(G) → L(S) that labels each leaf of a gene tree
with the species, i.e., a leaf from S, from which the gene was sampled. The LCA
mapping, M, from gene tree nodes to species tree notes is defined as follows:
if g is a leaf node, then M(g) := Le(g); if g has two children g′ and g′′ then
M(g) := lca(M(g′),M(g′′)).

Definition 2.1. (DLC scenario) Given a gene tree G, a species tree S, and a leaf
mapping Le : L(G)→ L(S), the DLC (reconciliation) scenario for G,S, and Le
is a tuple 〈M,L,O〉, such that

– M : V (G)→ V (S) denotes a species map that maps each node of gene tree
to a species node. In this work, species maps are fixed to the LCA mapping.

– L denotes the locus set.
– L : V (G)→ L is a surjective locus map that maps each node of gene tree to

a locus,
– For a species node s, let parent_loci(s) be the set of loci that yield a new

locus in s defined as {L(p(g)) : g ∈ V̇ (G), M(g) = s and L(g) 6= L(p(g))}.
Then, O is a partial order on V (G), such that, for every s and every
l ∈ parent_loci(s), O is a total order on the set of nodes O(s, l) := {g : g ∈
V̇ (G), M(g) = s and L(p(g)) = l}.

Subject to the constraints.

1. For every locus l, the subgraph of the gene tree induced by L−1({l}) is a
tree. Moreover, every leaf of such a tree that is also a leaf in G must be
uniquely labeled by species.

2. For every s ∈ V (S), l ∈ parent_loci(s), g, g′ ∈ O(s, l) if g ≤G g′, then
g ≤O g′.

3. A node g is called bottom if no child of g maps toM(g). We say that a node
g is top (inM(g)) if g is bottom inM(p(g)). Then, x >O y >O z for every
bottom node x ∈ O(s, l), every non-bottom node y ∈ O(s, l), and every top
node z in s.

The first constraint assures that all gene nodes with the same locus form
a connected component; i.e., each locus is created only once. The second con-
straint incorporates the gene tree’s topology in partial order O. Finally, the third
constraint guarantees that bottom and top nodes are properly ordered by O.



Inserting Implied Speciation Nodes. For proper embedding a gene tree into
a species tree, we require additional degree-two nodes inserted into the gene tree.

Given a gene tree, we define the transformation called insertion of an implied
speciation as follows. The operation subdivides an edge (g, g′) ∈ G with a new
node h, called an implied speciation, and sets M(h) = p(M(g′)) if (i) either
p(M(g′)) > M(g), or (ii) p(M(g′)) = M(g) and g is not a bottom node of
M(g). Note that h becomes a bottom node after the insertion.

Then, we transformG by a maximal sequence of implied speciation insertions.
It is not difficult to see that the resulting gene tree with implied speciation nodes
is well defined and unique.
Counting evolutionary events. Note that, we first define the species mapM,
then we transform gene tree by inserting the implied speciation nodes. Next, we
define the locus map and partial order O on the transformed gene tree. Finally,
having the DLC scenario, we can define the evolutionary events induced by the
scenario.

We start with several definitions. Let s be a node from the species tree.
By ⊥(s) and >(s) we denote the sets of all bottom and all top nodes of s,
respectively. By nodes(s) we denote the set of gene nodes mapping to s (i.e.,
M−1({s}). The internal nodes of s are defined as int(s) = nodes(s) \ ⊥(s).

For G, S, Le and α = 〈M,L,O〉, we have the following evolutionary events
at s ∈ V (S).
– Duplication: A non-root gene tree node g is called a duplication (atM(g))

if L(g) 6= L(p(g)). Additionally, we call g the locus root. We then say that a
duplication happened on edge (p(g), g).

– Loss: A locus l is lost at s if l is present in s or at the top of s but l is not
present at the bottom of s. Formally, l is lost if l ∈ L(>(s) ∪ nodes(s)) and
l /∈ L(⊥(s)).

– ILS at speciation: Let C(s, l) be the set of all gene lineages (g, g′) such
that g is a top node at s, whose loci is l, and g′ is mapped to s. Then, locus
l induces max{|C(s, l)| − 1, 0} (deep) coalescence events at speciation s.

– ILS at duplication: For each duplication d, whose parent loci is l, a gene
lineage in species s at locus l is contemporaneous with d if the lineage starts
before and ends after the duplication node d. Let K(d) denote the set of all
edges contemporaneous with d. Formally, K(d) = {g : g ∈ O(s, l) and g >O
d >O p(g)}. Then, the duplication d induces max{|K(d)| − 1, 0} (deep)
coalescence events.

Problem 1 (DLCParsimony). Given G, S, Le, and real numbers cD, cL. and
cDC , the reconciliation cost for a DLC scenario α = (M,L,O) is

Rα :=
∑

s∈V (S)

cD · nDα(s) + cL · nLα(s) + cDC · (nCSα(s) + nCDα(s)),

where nDα(s), is the total number of duplication nodes at s, nLα(s) is the total
number of lost loci at s, and nCSα(s) is the total number of coalescence events at
speciation s, and nCDα(s) is the total number coalescence events at duplications
mapped to s in the scenario α.
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Fig. 1: An example of a DLC scenario with six loci 1 through 6. Stars indicate
the duplication events. Left: a gene tree with nodes annotated by locus numbers.
Middle: species tree. Right: embedding of the gene tree into the species tree.

3 ILP formulation for DLCParsimony

We now present an Integer Linear Programming (ILP) formulation for solv-
ing the DLCParsimony problem. From now on, we refer to this formulation as
DLCPar-ILP. First, we define global parameters that can be used to constraint
the formulation (see constrained models in the next section).

Model Parameters.
Dg Binary parameter for each g ∈ I(G). It is 1, if a duplication event is allowed

in one of the children of g. In this section Dg = 1 for all g, since we do not
want to constrain our model.
Next we define the notation that will be used throughout the formulation.

Model Notation.
I(s) Possible order values (indices) of gene nodes within a total ordering of

gene nodes induced by O and restricted to species node s. That is, I(s) =
{1, ..., |int(s)|}

N The maximum possible number of loci; i.e., maximum possible number of
duplications plus one. In particular, N = 1 +

∑
g∈I(G)Dg. Further, we

denote the set {1, . . . ,N} by [N ].
Fg Indicates the locus index of node g and is defined as Fg :=∑

g′∈I(G),g′≤ord gDg′ , where ≤ord is some total order on I(G). Fg guar-
antees that duplication at node g yields a new and distinguished locus Fg
in the locus tree.

Now we declare the core variables needed for the ILP formulation.



Decision Variables.

xuv A binary variable for edge (u, v) ∈ E(G). Equals to 1 if v is a duplication;
otherwise 0.

ygl Binary variable. 1 if node g ∈ V (G) is assigned to locus l; otherwise 0.
els Binary variable. 1 if locus l is lost at species node/branch s; otherwise 0.
cls The number of deep coalescence events at a speciation s induced by the

locus l.
dgl If g is a duplication and l = L(p(g)), then it denotes the number of corre-

sponding deep coalescence events induced by locus l. Otherwise, dgl = 0.
zgo: Binary variable. 1, if node g ∈ V (G) is assigned to order o ∈ I(M(g)).
wgol: Binary variable. 1, if node g ∈ V (G) is assigned to order o and locus l.
mgol: Binary variable. 1, if node g is assigned to order o and locus l and one of

children of g is a locus root (i.e., a duplication event happened immediately
below g).

Finally, we describe the objective function and the model constraints using
the above variables. In particular, the objective function at equation 1 mini-
mizes the DLC score. The first term in objective function calculates the total
number of duplication events, whereas the second term computes the number
of loss events and coalescence events at speciations. The coalescence events at
duplications are computed by the last term in the objective function.

Model constraints.

min ζ =
∑
e∈E(G) xe +

∑
s∈V (S)

∑
l∈[N ](els + cls)

+
∑
s∈V (S)

∑
l∈[N ]

∑
g∈int(s) dgl (1)

s. t.
∑
e=(g,g′)∈E(G) xe ≤ Dg g ∈ V (G) (2)∑

g∈⊥(s) ygl ≤ 1 ∀s ∈ L(S), l ∈ [N ] (3)∑
l∈[N ] ygl = 1 ∀g ∈ V (G) (4)

yr(G),1 = 1 (5)
Fgxe ≤

∑
l∈[N ] lyg′l ≤ Fgxe +N (1− xe) ∀e = (g, g′) ∈ E(G) (6)

−N xgg′ ≤ yg′l − ygl ≤ N xgg′ ∀(g, g′) ∈ E(G), l ∈ [N ] (7)∑
g∈>(s) ygl − |V (G)|(els +

∑
g∈⊥(s) ygl) ≤ 0 ∀l ∈ [N ], s ∈ V (S) (8)∑

g∈>(s),(g,g′)∈E(G),g′∈nodes(s) ygl − 1 ≤ cls ∀l ∈ [N ], s ∈ V (S) (9)∑
o∈I(s) zgo = 1 ∀s ∈ V (S), g ∈ int(s) (10)∑
g∈int(s) zgo = 1 ∀s ∈ V (S), o ∈ I(s) (11)∑

o′∈I(s),o′≤o zg′o′ ≤ 1− zgo ∀s ∈ V (S), g, g′ ∈ int(s),

(g, g′) ∈ E(G), o ∈ I(s)(12)
2wgol ≤ ygl + zgo ≤ 1 + wgol ∀s ∈ V (S), l ∈ [N ],

g ∈ int(s), o ∈ I(s) (13)∑
g∈>(s),(g,g′)∈E(G),g′∈nodes(s) yg′l − 1 ≤ nls ∀l ∈ [N ], s ∈ V (S) (14)



nls +
∑
g′∈int(s)\{g}

∑
o′<o(wg′o′l −mg′o′l) ∀l ∈ [N ], s ∈ V (S),

≤ dgl + |>(s)|(1−mgol) o ∈ I(s), g ∈ int(s) (15)
2mgol ≤ wgol +

∑
e=(g,g′)∈E(G) xe ≤ 1 +mgol ∀s ∈ V (S), l ∈ [N ],

g ∈ int(s), o ∈ I(s) (16)
dgl, els, cls.nls ≥ 0 (17)

mgol, wgol, xe, ygl, zgo ∈ {0, 1} (18)

In a most parsimonious reconciliation scenario for each internal gene node g
only one of its children can be a new locus root [20]. This condition is enforced by
inequality 2. Inequality 3 enforces that extant gene nodes mapping to the same
extant species must be assigned to different loci. Further, each gene node must
be assigned to one locus and it is enforced by Constraint 4. Constraint 5 assigns
the original locus (locus 1) to the root of the gene tree. Constraint 6 forces the
child gene and its parent to map to different loci if there exists a duplication
event between them. Constraint 7 guarantees that if there is no duplication event
at gene edge (g, g′), then the locus of g and g′ must be the same.

Constraint 8 enforces the correct calculation of loss events. In particular, it
ensures that els for locus l and species s is 1 if there exists a gene node from
>(s) with locus l, while there is no gene node in ⊥(s) with the same locus.
Constraint 9 ensures the correct assignment of cls variables (i.e., the number of
coalescence events at speciations). Constraints 10 and 11 jointly assign the par-
tial orders to interior nodes at each species branch. Based on these constraints
each order must be assigned to one interior node and each interior node must
be assigned to one position in the order. Constraint 12 corresponds to the con-
straint 2 in Definition 2.1. Constraint 13 ensures proper assignment of the wgol
variables. Constraints 14 and 15 should be considered together (note that nls is
an additional variable that joins those two equations; it is required to properly
count extra gene lineages at duplications). Those constraints together ensure
proper counting of the deep coalescence events at a duplication that happens in
one of the children of node g for locus l at species node s. Constraint 16 assures
the correct assignment of mgol variables.

3.1 Designing efficiently computable formulations

While the original DLCPar model is very flexible in terms of edges, where dupli-
cations can appear, this flexibility contributes substantially to the computational
complexity of DLCPar (see the Scalability study for more details). Therefore,
in this section, we consider a strategy of restraining the duplication placement
only to those edges, where there is evidence that a duplication has occurred.

In particular, we call a node g ∈ V (G) with children g′ and g′′ an apparent
duplication parent if clu(g′) ∩ clu(g′′) is not empty. That is, there exist extant
species, which both child lineages of g sort out to.

We then constraint the DLCPar model in the way that only children of
apparent duplication parents can be locus roots. In fact, there are two options



for how this constraint can be implemented, which we call ILP-C1 and ILP-C2
that are formalized below.

ILP-C1. Observe that Dg variables defined in the previous section allow us to
constrain the locations of gene duplication events easily. That is, we define the
ILP-C1 formulation by properly setting the Dg variables: Dg = 1 if and only if
g is an apparent duplication parent.

ILP-C2. Since apparent duplication parents provide strong evidence of duplica-
tions, we define, in addition, a tighter model (ILP-C2). In this model, we require
that one of the children of each apparent duplication parent must be a dupli-
cation. Note that, while this is a strong condition, it allows us to simplify the
ILP formulation and reduce the number of variables. That is, we anticipate that
ILP-C2 formulation performs fastest in practice.

More precisely, in this model, we “know”, where duplications must appear (at
least we know the parents of duplications). Therefore, Inequality 2 in DLCPar-
ILP should become an equality (which tightens the solution space); further, the
mgol variables become redundant, so they can be removed.

3.2 Size of ILP formulations

We analyze the size of our ILP formulations in terms of their number of variables
and constraints. Let n denote the number of nodes in the gene tree and let
m denote the number of nodes in the species tree. Further, let k denote the
maximum possible number of loci in the gene tree. Note that k < n and k in the
ILP-C1 and ILP-C2 models can be expected to be significantly smaller than in
the DLCPar-ILP model due to the modified Dg variables.

Then in the DLCPar-ILP and ILP-C1 models, the upper bound on the num-
ber of variables is

2km+ (2k + 1)(n+ n2) = O(k(m+ n2)),

and the number of constraints is

(3k + 1)n2 + (k + 2m+ 3)n+ 4mk + 1 = O(kn2 +m(n+ k)).

Finally, the ILP-C2 model has

2km+ (2k + 1)n+ (k + 1)n2

variables, and

(k + 1)n2 + (k2 + 2m+ 3)n+ 4mk + 1

constraints. Observe, that the ILP-C2 model has fewer variables than the other
two models (while asymptotically the same).



3.3 Searching for multiple optimal solutions

The proposed formulations can be extended to detect multiple optimal solutions
through an iterative algorithm. At each iteration of that algorithm, our models
identify one more alternative optimal solution (if such a solution exists). In
particular, for a fixed model, at the first iteration, we solve the original model
and save the optimal variables x∗, y∗, and z∗ as a part of an optimal solution.
To identify a different optimal solution with the same objective value, we add a
new constraint such that the ILP model does not repeat identifying previously
detected optimal solutions. This constraint is defined as∑
e∈E(G)

(xe − 1)x∗e +
∑

g∈V (G)

∑
l∈[N ]

(ygl − 1)y∗gl +
∑

g∈V (G)

∑
l∈[N ]

(zgo − 1)z∗go ≤ −1.

We repeat this process as long as the optimal DLC score is the same as the
previous iterations.

4 Simulation study

We present a broad simulation study that (i) compares the computational effi-
ciency and scalability of the developed ILP models with DLCPar and (ii) vali-
dates the accuracy of the constrained ILP formulations. Note that we carry out
our studies under varied simulation parameters controlling the rate of duplica-
tion/loss events as well as the rate of ILS.
Experimental setup. The process for converting an instance of the DLCPar-
simony problem to an ILP formulation was implemented in Python 3. Then
ILP instances were solved with the Gurobi optimizer version 9.0 [8]. As for DL-
CPar [20], we used the exact version of the software without heuristic options
for a fair comparison. Further, we set the DLCParsimony cost parameters as
cD = cL = cDC = 1. We performed the experiments on a standard workstation
with 1.2 GHz (3.6 GHz maximum) CPU.
Simulated data. We used the standard SimPhy simulator [13] to generate the
DLCParsimony instances. SimPhy works by first simulating a birth-death species
tree and then applying the 2-step DLCoal process by Rasmussen et al. [17] to
simulate the multi-locus gene trees. We use the standard simulation parameters
derived from the real-world 16 fungi dataset [4, 14, 17]. In particular, we follow
the parameter settings by Molloy and Warnow [14].

To conduct a comprehensive analysis and properly evaluate the proposed
constrained DLCPar model, we perform our experiments under various realistic
levels of the gene duplication and loss (GDL) and incomplete lineage sorting
(ILS). More precisely, we use three different GDL levels: 1e-10 duplication&loss
events per year (low GDL rate), 2e-10 (moderate GDL rate), and 5e-10 (high
GDL rate). Further, we use two different ILS levels by controlling the tree-wide
effective population size; i.e., we use the effective population sizes of 1e7 and 5e7
(that correspond to low and moderate ILS levels respectively, according to [14]).



Combination Population GDL Number of Instances
size DLCPar-ILP ILP-C1 ILP-C2 DLCPar

1 1e7 1e-10 2 0 0 0
2 1e7 2e-10 9 0 0 1
3 1e7 5e-10 10 1 1 8
4 5e7 1e-10 8 0 0 2
5 5e7 2e-10 9 0 0 3
6 5e7 5e-10 16 2 1 16

Table 1: Number of Instances with running time above 600 seconds out of 100
instances for each combination

Finally, we simulated DLCParsimony instances with the number of species
varying from 5 to 50. That is, overall, we had 3×2×10 = 60 different parameter
settings for DLCParsimony instances. Then to ensure consistency, for each of
the 60 parameter combinations, we generated 10 independent DLCParsimony
instances. Then we executed DLCPar, DLCPar-ILP, and two constrained ILP
models (referred to here as ILP-C1 and ILP-C2 ) on each of the 600 gener-
ated problem instances. Due to a large number of instances and the advanced
complexity of the models, we constrained each execution time to 10 minutes.

4.1 Results and Discussion

Run-time comparison. Table 1 shows the breakdown for each algorithm, on
how many instances did it fail to complete within 10 minutes. Further, Figure 2
demonstrates the scalability ILP-C1 and ILP-C2 algorithms using examples of
high-GDL and low-ILS levels. Note that we omitted DLCPar and DLCPar-ILP
from the figure as there were multiple instances where those algorithms did not
complete (introducing noise).

As expected, we observed that the constrained ILP formulations generally
performed faster than both DLCPar and DLCPar-ILP, particularly for instances
with more than 50 genes. Overall, ILP-C1 and ILP-C2 were not able to complete
within 10 minutes only on 3 and 2 instances out of 600, respectively. The smallest
instance size, where all algorithms failed, contained 50 species and 202 genes.
Note, however, that ILP-C1 and ILP-C2 were able to complete on other instances
with up to 272 genes (which was the largest number of genes in our study).

Further, we generally observed that DLCPar-ILP failed to complete on more
instances than DLCPar (54/600 compared to 30/600), and DLCPar was faster
than DLCPar-ILP on average. However, we observed that there were 17 in-
stances, where DLCPar-ILP was able to complete, while DLCPar failed. At the
same time, there were 38 instances, where DLCPar was able to complete, while
DLCPar-ILP failed. That is, there is no clear domination of one method over
the other, and the two methods can be used as complements of each other.
Validating constrained models. Given that for the vast majority of instances
DLCPar-ILP or DLCPar have completed, we were able to validate the assump-



Fig. 2: Computational time comparison for ILP-C1 and ILP-C2 on the example
of high-GDL and low-ILS instances.

tions of the constrained models. That is, we compare the optimum DLC recon-
ciliation score from the constrained models against the overall optimum DLC
score (in the unconstrained case). See Table 2 for the results breakdown.

Interestingly, we observed that in 98.17% of instances (where we know the
optimum unconstrained cost) ILP-C1 provided exactly the same reconciliation
cost as the original DLC-model. Moreover, in the 10 instances, where ILP-C1
provided a slightly higher cost, the difference in costs was at most 2. On the other
hand, ILP-C2, which showed to be faster on average than ILP-C1, provided over-
estimated reconciliation costs more often. It was exactly correct in 89.9% cases,
and the difference in costs in the other 55 cases was at most 8.

That is, overall, ILP-C1 proved to be both very effective and efficient in prac-
tice, almost always providing the globally optimum reconciliation cost. There-
fore, we suggest the use of this constrained model in practice.

ILP-C2 proved to be faster than ILP-C1 on average, but it gives worse accu-
racy due to the strength of the constraints. Indeed, ILP-C2 can be very effective
in domains with low levels of ILS, since it over-estimated costs significantly less
frequently when population size was smaller (see Table 2).



Combination Population GDL Number of Instances
size ILP-C1 ILP-C2

1 1e7 1e-10 0/98 0/98
2 1e7 2e-10 1/91 1/91
3 1e7 5e-10 2/90 14/90
4 5e7 1e-10 0/92 6/92
5 5e7 2e-10 2/91 14/91
6 5e7 5e-10 5/84 20/84

Table 2: Number of Instances, where ILP-C1 and ILP-C2 score was larger than
the DLCPar-ILP/DLCPar score.
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