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Abstract. Phylogenetic tree reconciliation is a widely used approach
for analyzing the inconsistencies between the evolutionary histories of
genes, and the species through which they have evolved. An important
aspect of tree reconciliation are the cost functions involved that are the
minimum number of evolutionary events explaining such inconsistencies.
Mean values for these functions are fundamental when analyzing tree
reconciliations. Here we describe mean value formulas when a history of
genes is �xed for the cost functions for the events gene duplication, gene
loss and gene duplication-loss, under the uniform model of species trees.
We show that these formulas can be e�ciently computed, and �nally
analyze the mean values using empirical and simulated data.

Keywords: tree reconciliation, duplication-loss model, deep coalescence, spe-
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1 Introduction

Phylogenetic tree reconciliation is a powerful tool for analyzing the inconsisten-
cies between the evolutionary histories of genes, and the species through which
they have evolved. Through algorithmic advances in tree reconciliation such an-
alyzes have become common practice in various biological research areas, such
as molecular biology and microbiology [21]. For example tree reconciliation is
used to illuminate the dynamics of gene family evolution in terms of complex
evolutionary processes [5,20]. Reconciling trees is also one of the most reliable
approaches for identifying truly orthologous genes [1,2], which is a fundamental
task in understanding the evolution of genetic function [19].

Tree reconciliation is a process that takes two trees as input, a gene tree that
is the evolutionary history of genes, and a species tree that is the evolutionary
history of the species hosting the genes. It seeks an embedding of the gene tree
into the species tree (i.e., the evolution of the gene tree along the branches of
the species tree) that explains possible inconsistencies between the two trees by



inferring the minimum number of evolutionary events, such as gene duplication,
gene loss, the combination of gene duplication-loss, and deep coalescence.

An important aspect of tree reconciliation is its associated cost that is the
(minimum) number of evolutionary events inferred by the process. This, for
example, allows the comparative analysis of gene trees in the context of their
corresponding species trees [25,26], which is a standard approach for synthesizing
large-scale species trees from collections of discordant gene trees [3,6].

The widespread usage of tree reconciliation in practice has led to a growing
interest in analyzing reconciliation cost functions. This includes analyzing the
diameters of such functions that are the maximum costs when one or both tree
topologies are given [11,12,14,13]. More recently, the mean values of reconcilia-
tion cost functions have been studied when either a gene tree or a species tree
is given. The mean value for a gene tree for a reconciliation cost function is
the mean of the costs between the gene tree and all of its corresponding species
trees. The mean value of a species tree is de�ned similarly. These mean values
have been studied under two classic probability models for phylogenetic trees
that are the uniform model and the Yule-Harding model [18,24,28].

Here we study the mean values for a gene tree under the uniform distribution
for the the reconciliation functions for each of the events, gene duplication and
loss, gene duplication, and gene loss.

Previous Work. The pioneering work of Goodman et al. [9] introduced the
approach for reconciling a gene tree with a corresponding species tree, where
both of these trees are rooted and full binary. This approach is embedding the
gene tree into the species tree using a mapping that relates every gene in the gene
tree to its host species that is the most recent species that could have contained
the gene. Consequently, the mapping is relating every leaf-gene of the gene tree
to the species from which it has been sampled. When restricted to the leaf-genes,
the mapping is referred to as leaf-labeling. Based on this mapping the evolution-
ary events, gene duplication, gene loss, and the combination of gene duplication
and subsequent loss (in short, duplication-loss) are identi�ed. A gene is a gene

duplication when it has a child with the same host species, and a gene loss is
accounted for by a maximum subtree in the species tree that has no host species
(i.e., no mapping from the gene tree). While other embeddings are possible [15]
the mapping describes the most parsimonious embedding in terms of the num-
ber of gene duplication and loss events [7,4,15]. The reconciliation cost function
associated with each of these events counts the number of their occurrences in
terms of gene duplications, gene losses, and gene duplications plus losses, and
are termed duplication, loss, and duplication-loss cost functions respectively. The
deep coalescence cost function, introduced by Maddison [22], is also based on
the reconciliation approach. Edges in the species tree may have embedded edges
from the gene tree, which are called lineages. The deep coalescence cost func-

tion counts for every edge in the species tree the number of lineages minus one,
which are thought to be caused by deep coalescence events. From the mathe-
matical point of view, the gene loss cost function is a linear combination of gene
duplication and deep coalescence cost functions [16,31], and therefore, any prop-
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erty derived for these two functions can naturally be translated into gene loss and
gene duplication-loss cost functions. All of the described reconciliation functions
have been de�ned for general leaf-labelings and for bijective leaf-labelings.

The focus of this work are the mean values of the described reconciliation
cost functions for bijective leaf-labelings under the uniform distribution of phy-
logenetic trees. Mean value formulas have been described for a given species tree
for the deep coalescence cost function [29]. More recently such formulas have
also been described for the gene duplication, gene loss, and gene duplication-loss
cost functions [17]. For the computation time to obtain these mean values let n
be the size of the given species tree. The mean values for a given species tree
under the uniform model can be computed in O(n) time for the deep coalescense
cost function, and in time O(n3) for the gene duplication, gene loss, and gene
duplication-loss cost functions [17]. Mean value formulas for a given gene tree
have only been described for the deep coalescence cost function [29], and this
value is computable in O(n) time, where n is the size of the given gene tree.

Our Contributions. In this article we develop the formulas to compute the
mean values for the reconciliation cost using gene duplication and loss, gene
duplication, and gene loss events when the gene tree is given under a uniform
distribution for the species trees. We show that these formulas can be computed
in time O(n3) for a given gene tree of size n. Finally, we conducted comparative
studies for �xed gene and �xed species tree means for our reconciliation costs
and performed an analysis of an empirical dataset consisting of thousands of
gene family trees.

2 Basic de�nitions

We follow the basic de�nitions and notation from [16,31]. Let X be a non-empty
set of n species (taxa). The set of all full binary and rooted trees whose leaves
are bijectively labeled by the species in X is denoted by R(X). Trees in R(X)
are denoted by using the standard nested parenthesis notation. Given a tree
T 2 R(X), we denote its node and edge sets by VT and ET respectively. The
root of T is denoted by root(T ) and the parent of a non-root node v is denoted
by par(v). We denote the least common ancestor of nodes v; w 2 VT in tree T

by lcaT (v; w). A cluster (or also called clade) of a node v 2 VT is the set of all
leaf labels of the subtree of T rooted at v.

In phylogenetic tree reconciliation a gene tree is embedded into its corre-
sponding species tree. In this work we assume that both types of trees have the
same bijective labelling of leaves. Therefore, we assume that every gene tree and
every species tree is an element of R(X). For a (gene) tree G 2 R(X) and a
(species) tree S 2 R(X) the least common ancestor mapping between G and S,
or lca-mapping, M : VG ! VS , is de�ned as M(g) = s if g and s are leaves with
the same label, and M(g) = lcaS(M(g0);M(g00)) if g has two children g0 and g00.
An internal node g is called a duplication, or an S-duplication, if M(g) = M(a)
for a child a of g. Every internal non-duplication node is called a speciation.
The duplication cost, denoted by D(G;S), is the total number of S-duplications
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in G [25]. The deep coalescence cost function [22,23,31] can be expressed by
DC(G;S) :=

P
g2VGnfroot(G)g

(kM(g);M(par(g))k � 1), where ka; bk is the num-
ber of edges on the simple path connecting nodes a; b 2 SV . The reader is referred
to [29] for alternative de�nitions of DC. Finally, we can provide formulas for the
loss and duplication-loss cost functions [31]: L(G;S) := 2D(G;S)+DC(G;S) and
DL(G;S) := D(G;S) + L(G;S). For a more detailed introduction to the model
please refer to [15,22,25].

3 Results

In the uniform model of binary trees an equal probability is assigned to each
possible leaf labeled binary tree with n leaves. In this model rooted trees can be
generated by uniform and random insertions of one edge to any edge including
the rooting edge at each step. For example, given a rooted tree (a; (b; c)), the
following �ve four-labelled trees can be created by inserting a new edge with a leaf
d: (((a; d); b); c), ((a; (b; d)); c), (((a; b); d); c), ((a; b); (c; d)), and (((a; b); c); d).

We analyse the mean of the duplication cost in the uniform model of rooted
leaf-labeled trees. Let R(X) denote the set of all bijectively labeled rooted trees
over a non-empty set X. Then, the mean of duplication cost for a �xed gene tree
G 2 R(X) under a probabilistic model of species trees is:

Du(G) =
X

S2R(X)

P(S)D(G;S): (1)

Recall that size of R(X) is b(n) = (2n � 3)!!, where k!! is the double factorial,
i.e., k!! = k � (k�2)!! and 0!! = (�1)!! = 1. Hence, in the uniform model for every
tree T 2 R(X) has probability P(T ) = 1

b(n) .

Now we introduce a notion of a (rooted) split. Every non-leaf node v 2 VT ,
induces a split AjB, where A and B are the clusters of children of v. The set
of all splits in T is denoted by Spl(T ). As an example, Spl(((a; b); (c; d))) =
fffa; bg; fc; dgg; ffag; fbgg; ffcg; fdggg, which we describe by using the simpli-
�ed split notation: fabjcd; ajb; cjdg.

For a split AjB induced by a node v from a �xed gene tree G 2 R(X), by
�Dup
n (A;B) we denote the number of species trees S from R(X) such that v is

an S-duplication node. Similarly, we de�ne �Specn (A;B) for speciation nodes.

Lemma 1. For a gene tree G with n leaves,X
AjB2Spl(G)

�Dup
n (A;B) + �Specn (A;B) = b(n) � (n� 1):

Now, the mean (1) is equivalent to

Du(G) =
1

b(n)

X
AjB2Spl(G)

�Dup
n (A;B) = n� 1�

1

b(n)

X
AjB2Spl(G)

�Specn (A;B): (2)

Similiarly to [17], it is more convenient to count directly the number of speciation
nodes rather then duplications.

4



a b c d

0

a b

c

d

1D 3L

a b

d

c

1D 3L

c d

a

b

1D 3L

c d

b

a

1D 3L

a c b d

1D 4L

a c

b

d

1D 4L

a c

d

b

1D 4L

b d

a

c

1D 4L

b d

c

a

1D 4L

a d b c

1D 4L

a d

b

c

1D 4L

a d

c

b

1D 4L

b c

a

d

1D 4L

b c

d

a

1D 4L

Fig. 1. Embeddings (scenarios) of G = ((a; b); (c; d)) into every species four-leaf species
tree [15]. Each scenario is summarized with two numbers denoting the number of gene
duplications (D) and the number of gene losses (L). We have 14 gene duplications,
31 speciation nodes and 52 gene losses in total. In this example, Du(G) = 14=15,
L(G) = 52=15 and DLu(G) = 66=15.

Lemma 2. For a species tree G with n leaves and a split AjB present in G

�Specn (A;B) =

mX
i=0

m�iX
j=0

�
m

i

��
m� i

j

�
b(jAj + i)b(jBj + j)b(m� i� j + 1):

where m = n� jAj � jBj.

Proof. Let v 2 G has the split AjB. A species tree S that induces a speciation
node v mapped into a node s from S can be constructed as follows. Let z be
an element not in X. Let A0 and B0 be two disjoint supersets of A and B,
respectively. Then, a species tree S 2 R(X) such that s has split A0jB0 can be
constructed by replacing the leaf z in a tree R((X n (A0 [ B0)) [ fzg) by a tree
(SA; SB) such that SA 2 R(A0) and SB 2 R(B0). Then, v is a speciation node
mapped to the root of (SA; SB) in S. On the other hand note that every S such
that v from G is a speciation node mapped to a node in S, is inferred exactly
once in the above procedure. ut

Now, we can state the main result that follows from Lemma 2 and Eq. 2.

Theorem 1 (Fixed gene tree mean of D under the uniform model). For
a given gene tree G with n leaves

Du(G) = n�1�
1

b(n)

X
AjB2Spl(G)

m=n�jAj�jBj

mX
i=0

m�iX
j=0

�
m

i

��
m� i

j

�
b(jAj+i)b(jBj+j)b(m�i�j+1):

To obtain the mean formula for DL cost we recall the result from [29] (see
Cor. 13) on the deep coalescence cost. For a gene tree G with n leaves:

DCu(G) = �(2n� 1) + 2n
(2n� 2)!!

b(n)
�

(2n� 2)!!

b(n)

X
v2VG

(2jCvj � 3)!!

(2jCvj � 2)!!
;
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where Cv denotes the cluster of a node v.
Finally, we have the result for DL and L (see also similar results for �xed

species tree from [17]).

Theorem 2 (Fixed gene tree mean of DL and L). For a gene tree G we

have DLu(G) = 3 � Du(G) + DCu(G) and Lu(G) = 2 � Du(G) + DCu(G).

Proof. It follows from the de�nition of gene loss and duplication-loss functions
and the properties of mean values. ut

Given the mean formulas for DC and D it is now straightforward to obtain the
exact formulas for the means of DL and D. We omit these details for brevity. See
an example of mean values depicted in Fig. 1.

Computing the mean of deep coalescence for a �xed gene tree can be com-
pleted in O(n) steps under assumption that double factorials are memorized and
the required size of clusters is stored with the nodes of the standard pointer-like
implementation of trees. For the mean of the remaining cost functions, how-
ever, we need two additional loops. Therefore, the time complexity of computing
Du(G), Lu(G) and DLu(G) is O(n3).

4 Experimental evaluation

4.1 Mean values for tree shapes

Here we analyze the mean values of our analyzed reconciliation cost functions for
all tree shapes with 3; 4; : : : 9 leaves ordered by their Furnas rank [8], which are
depicted in Table 1. We observe that tree shapes with the same number of splits
induce the same mean values (e.g., the two red colored tree shapes) which follows
directly from the mean value formulas for deep coalescence and duplication cost
functions. This property also holds for the mean values when a species tree is
�xed [17]. Note, while in [17] the mean value of the duplication cost function for
a �xed species tree was conjectured to grow monotonically with the Furnas rank,
this is not the case for the corresponding mean values when a gene tree is �xed
as indicated in Table 1. Moreover, we can observe that the mean value of the
duplication cost function is maximum for caterpillar trees while it is minimum
for the most balanced once.

Moreover, we compared the mean values for �xed species tree shapes from [17]
with their corresponding values when the gene tree is �xed. Therefore, we com-
puted the mean values for all gene tree shapes with up to 20 leaves, e.g., for
n = 20 there are 293547 trees. Fig. 2 depicts two diagrams which represent the
means for a �xed species tree shapes [17] and the corresponding means for a
�xed gene tree shapes, respectively. While we are expecting that the blue ovoids
and the red ovoids will increasingly overlap with an increasing number of taxa,
we observe that this occurs earlier (i.e., for smaller sizes of taxa) for species tree
shapes. For the duplication cost function we observe a broader range of means
in the upper diagram, while the range for the other cost functions appears to
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be broader for the species tree shapes. In combination with our previous obser-
vations from Table 1, we conclude that the properties of the duplication cost
function di�ers signi�cantly when comparing the two types of �xed tree means.
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Fig. 2. Top: Frequency diagram of mean values of duplication, duplication-loss and
deep coalescence costs for all �xed gene tree shapes for n = 3; 4; : : : 20 under the uniform
model of species trees. For each n, mean values for every cost were grouped into bins
of size 0:01. The width of each bin is proportional to log

2
K, where K is the number of

gene tree shapes having the mean value in this bin. Bottom: The same type of diagram
for means of �xed species tree taken from [17].

4.2 Empirical study

In this section we study the distribution of mean values for the duplication and
duplication-loss cost functions for gene trees obtained from a baseline empirical
dataset. Additionally, we evaluate how the duplication and duplication-loss costs
compare to the respective mean values
Empirical dataset To evaluate the dsitributions of mean values on empirical
phylogenetic datasets we analyzed the classic TreeFam ver.9 dataset [27] consist-
ing of gene family trees of 109 mostly animal species (with 71 taxa in the gene
family trees on average). Among around 15 thousand rooted gene trees in the
dataset, the 4070 bijectively labeled and strictly bifurcated trees were selected.
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We further �ltered the trees based on their size; that is, we removed all trees
with less than 10 leaves in order to eliminate otherwise arising outliers due to
insu�cient tree size.

Given that the best-known species tree for the TreeFam dataset is not com-
pletely re�ned (contains many large multifurcations), we estimated the species
tree using a popular supertree tool, duptree2 [30]; the tool approximates a species
tree that minimizes the duplication cost for the given set of gene trees.

Experimental setting. In order to compare mean values for gene trees of
di�erent sizes and topologies we need to bring them up to the same scale. We
achieve this by normalizing the mean values by respective diameters. Note that
diameters under �xed gene tree topologies can be computed exactly, both for
the duplication and duplication-loss cost functions [13,10].

To assess the mean value distributions for trees taken from the empirical
dataset, we compare them to complete distributions for trees of �xed size. That
is, for a �xed number of leaves, t, we compute mean values for all possible
tree topologies with t leaves. This is repeated for t = 10; 12; 14, and 16. Apart
from serving as a complete distribution reference, these data also allows us to
empirically observe how the mean-value distributions progress with the increase
of taxa.

Results and discussion. Figure 3 illustrates that the mean values under the
duplication cost function for the TreeFam gene trees are concentrated around
the value 0:9. That is, the mean values are very close to respective cost diam-
eters, which implies that for all the trees under consideration, most of possible
species trees have a very high (close to the maximum) duplication cost. It also
suggests that the proximity of a duplication cost (normalized by the diameter)
to 0 indicates a high con�dence in the species tree.

Further, the complete distributions of duplication means for all possible tree
topologies over varying taxa size are shown on Figure 4 (left hand side) closely
resemble the distribution on empirical datasets. The �gure also demonstrates
that the duplication-mean distribution does not seem to change much with the
increase of taxa.

The empirical distribution for the duplication-loss means on Figure 3 (left-
hand side, red histogram) is rather spread on the interval from approximately
0:25 to 0:7 with multiple picks. Figure 4 (right hand side) additionally shows that
duplication-loss mean values (normalized by the respective diameters) gradually
decrease with increasing taxa number. Given that the TreeFam dataset contains
trees of varying size, the shifts in mean values for gene trees of larger size, explain
the wide range of duplication-loss means on Figure 4.
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Fig. 3. Comparison of (i) mean values normalized by diameters and (ii) costs nor-
malized by mean values for the duplication (D) and the duplication-loss (DL) cost
functions (TreeFam dataset).
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Fig. 4. Left : Distribution of duplication-mean values normalized by respective diame-
ters. The frequencies of the histogram were scaled by a square root to achieve a more
comprehensive visualization. Right : Distribution of duplication-loss-mean values nor-
malized by respective diameters. Distributions are shown for all possible tree topologies
over 10, 12, 14, and 16 taxa respectively.

Further, the mean values play an important role in the normalization of rec-
onciliation costs, since it allows us to relate reconciliation costs that are otherwise
signi�cantly a�ected by topologies of the gene trees. The histogram on the right-
hand side of Figure 3 shows duplication and duplication-loss costs normalized
by respective mean values. While the majority of trees are concentrated below
the value 0.5 (i.e., the cost is signi�cantly smaller than the respective mean),
there are some outliers for which the cost is close to the mean or even exceeds it.
Such trees can be thought of as not strongly correlating with the corresponding
species tree (or even correlating negatively), and they can represent gene families
of interest for a researcher. Alternatively, when the reconciliation cost between
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a gene tree and a species tree exceeds the mean value, it might indicate possible
errors in the gene tree.

5 Conclusions

In this work we have developed the mean value formulas for a �xed gene tree for
the gene duplication, gene loss and gene duplication-loss cost functions under the
uniform model of species trees. We have also shown that these mean values can
be e�ciently computed. Our comparative experiments demonstrate that there
can be fundamental di�erences between �xed species tree and �xed gene tree
means. This motivates further analyzes that may establish deeper mathematical
insights into mean values and the relations between them. Our future research
in mean values of tree shapes will dovetail with these ideas.
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n ≤ 6
0.67 2.00 1.47 4.93 0.93 3.47 2.32 8.59 1.79 7.07 1.64 6.53 3.21 12.87 2.68 11.30 2.53 10.74 2.45 10.43 1.92 8.85 2.32 9.92
2.67 0.67 6.40 2.00 4.40 1.60 10.91 3.94 8.86 3.49 8.17 3.26 16.08 6.44 13.97 5.94 13.26 5.68 12.88 5.52 10.77 5.02 12.24 5.27

n = 7
4.12 17.71 3.59 16.09 3.44 15.50 3.36 15.18 2.83 13.56 3.23 14.65 3.31 14.97 2.78 13.34 2.63 12.76 3.13 14.15 2.60 12.52
21.83 9.46 19.67 8.91 18.94 8.63 18.54 8.46 16.38 7.90 17.88 8.18 18.28 8.34 16.12 7.78 15.39 7.51 17.27 7.89 15.12 7.33

n = 8

5.04 23.05 4.51 21.39 4.36 20.79 4.28 20.45 3.75 18.79 4.16 19.90 4.24 20.23 3.70 18.56 3.55 17.96 4.05 19.37 3.52 17.71 4.21 20.07
28.10 12.97 25.90 12.37 25.15 12.07 24.73 11.88 22.54 11.29 24.05 11.59 24.46 11.75 22.27 11.16 21.51 10.86 23.42 11.27 21.23 10.67 24.27 11.66

3.67 18.40 3.52 17.80 3.44 17.46 2.91 15.80 3.32 16.91 3.99 19.02 3.45 17.35 3.30 16.75 3.93 18.72 3.40 17.05 2.87 15.39
22.08 11.06 21.32 10.76 20.90 10.57 18.71 9.98 20.23 10.28 23.00 11.04 20.81 10.44 20.05 10.14 22.65 10.85 20.45 10.26 18.25 9.66

n = 9

5.98 28.88 5.44 27.17 5.29 26.55 5.22 26.20 4.68 24.50 5.09 25.63 5.17 25.97 4.64 24.27 4.48 23.64 4.99 25.08 4.45 23.38 5.14 25.80
34.86 16.92 32.62 16.29 31.84 15.97 31.42 15.77 29.18 15.13 30.72 15.45 31.14 15.63 28.90 14.99 28.13 14.67 30.07 15.11 27.83 14.47 30.94 15.52

4.61 24.10 4.45 23.48 4.38 23.12 3.84 21.42 4.25 22.55 4.92 24.71 4.39 23.01 4.24 22.38 4.87 24.40 4.33 22.70 3.80 20.99 5.12 25.68
28.70 14.89 27.93 14.57 27.50 14.37 25.27 13.73 26.80 14.05 29.63 14.87 27.40 14.23 26.62 13.91 29.26 14.67 27.03 14.03 24.79 13.40 30.79 15.44

4.58 23.97 4.43 23.35 4.35 23.00 3.82 21.29 4.23 22.43 4.31 22.77 3.78 21.06 3.62 20.44 4.12 21.88 3.59 20.18 4.88 24.44 4.34 22.73
28.56 14.81 27.78 14.49 27.35 14.29 25.12 13.65 26.65 13.97 27.07 14.15 24.84 13.51 24.06 13.19 26.00 13.63 23.77 13.00 29.32 14.68 27.08 14.04

Key:

4.19 22.11 4.12 21.76 3.58 20.06 3.99 21.19 4.79 23.92 4.26 22.22 4.10 21.60 4.26 22.22 3.72 20.52 3.57 19.89 Du Lu

26.30 13.73 25.88 13.53 23.64 12.89 25.18 13.21 28.71 14.34 26.48 13.71 25.70 13.39 26.48 13.71 24.24 13.07 23.46 12.75 DLu DCu

Table 1. Mean values for all gene tree shapes with n 2 f3; 4; : : : ; 9g leaves. The shapes are shown ordered by their Furnas rank [8].
The table is patterned after [29,17]. The two red shapes for n = 9 have the same number of splits, which implies equal values of the
corresponding mean values.
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