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Abstract

Motivation: The classic multispecies coalescent (MSC) model provides the means for theoretical
justification of incomplete lineage sorting-aware species tree inference methods. This has motivated an
extensive body of work on phylogenetic methods that are statistically consistent under MSC. One such
particularly popular method is ASTRAL, a quartet-based species tree inference method. Novel studies
suggest that ASTRAL also performs well when given multi-locus gene trees in simulation studies. Further,
Legried et al. recently demonstrated that ASTRAL is statistically consistent under the gene duplication and
loss model (GDL). GDL is prevalent in evolutionary histories and is the first core process in the powerful
duplication-loss-coalescence evolutionary model (DLCoal) by Rasmussen and Kellis.
Results: In this work we prove that ASTRAL is statistically consistent under the general DLCoal model.
Therefore, our result supports the empirical evidence from the simulation-based studies. More broadly, we
prove that the quartet-based inference approach is statistically consistent under DLCoal.
Contact: Alexey Markin (alexey.markin@usda.gov)

1 Introduction
The accurate inference of evolutionary histories of species is a grand
challenge in evolutionary biology due to the fact that the true evolutionary
histories are rarely known (Bininda-Emonds, 2004). Consequently, the
common strategy in the phylogenetic community is to rely on established
statistical models of evolution when evaluating phylogenetic inference
methods. One of the most prominent such models is the multispecies
coalescent model (Rannala and Yang, 2003) that accounts for incomplete
lineage sorting (ILS), also known as deep coalescence. ILS is a prevalent
factor that causes discordance between the observed gene tree topologies
and the host species tree (Allman et al., 2018). In fact, a large body of
work in phylogenetics is dedicated to the design of species tree inference
methods that are statistically consistent under MSC. Statistical consistency
implies that as the number of observed gene trees grows, the species tree
estimate converges to the true species tree that “generated” the observed
data. Multiple phylogenetic inference methods have been demonstrated
to be statistically consistent, cf. GLASS (Mossel and Roch, 2008),

R∗ (Degnan et al., 2009), STEM (Kubatko et al., 2009), MP-EST (Liu
et al., 2010), BUCKy (Larget et al., 2010), STAR/USTAR (Liu et al.,
2009; Allman et al., 2016), NJst (Liu and Yu, 2011), ASTRID (Vachaspati
and Warnow, 2015), ASTRAL (Zhang et al., 2018), other rooted triplet and
unrooted quartet methods (Ewing et al., 2008; Rhodes, 2019; Yourdkhani
and Rhodes, 2020), and others.

In recent years ASTRAL became one of the most popular species
tree inference methods by practitioners. Note that ASTRAL’s objective
function is built on the notion of quartets (see Figure 1). In particular, the
proof that ASTRAL is statistically consistent under MSC stems from two
observations. First, Allman et al. (Allman et al., 2011) demonstrated that
if a species tree displays a quartet q then q is also the most likely observed
(unrooted) gene tree topology. Second, it can be seen that every species
tree clade will eventually appear in at least one of the observed gene trees.

More recently, Legried et al. (Legried et al., 2020) studied two natural
extensions of ASTRAL that enable processing the multi-locus gene trees.
Multi-locus gene trees can have multiple leaves with the same species
label (that is, the respective species has multiple copies of the same gene).
These extensions allow one to apply ASTRAL to a much broader class of
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phylogenetic gene trees and are referred to as ASTRAL-one and ASTRAL-
multi. Given four species (e.g., {A,B,C,D}) a multi-locus gene tree
can have multiple copies of each of the species and therefore can suggest
multiple (conflicting) quartets on {A,B,C,D}. In that case, ASTRAL-
one chooses a single random copy for each species label and considers the
respective quartet type, whereas ASTRAL-multi considers all gene copies
and all the respective quartets.

Focusing on these two extensions of ASTRAL, Legried et al. proved
that both ASTRAL-one and ASTRAL-multi are statistically consistent
under the gene duplication and loss model (GDL) (Legried et al., 2020).
Note that GDL is a part of the broader and well-recognized unified
duplication-loss-coalescence (DLCoal) model of gene tree evolution
by Rasmussen and Kellis (Rasmussen and Kellis, 2012). DLCoal
simultaneously accounts for three crucial types of evolutionary factors that
shape gene family evolution. Namely, duplications, losses, and incomplete
lineage sorting. The DLCoal process involves two steps, (i) a birth/death
process within the branches of the species tree creates a locus tree (i.e.,
the GDL process), and (ii) a bounded multispecies coalescence process
acting on the locus tree generates the observed gene tree. See Figure 2 for
an example.

In this work, for the first time, we prove that ASTRAL-one is
statistically consistent under the general DLCoal model. First, we
derive gene tree probabilities (constrained to quartets) under the bounded
multispecies coalescent model and draw core observations from that
analysis. Second, we build on an idea from Legried et al. to systematically
separate different duplication-loss scenarios. Then, for each such scenario,
we prove that a random quartet from the gene tree is more likely to agree
with the species tree quartet rather than any of the two other quartets.
Finally, we extend our result for ASTRAL-one to ASTRAL-multi and
demonstrate that ASTRAL-multi is also consistent under DLCoal 1.

Our results provide a theoretical justification to the findings in (Du
et al., 2019), which showcased the accuracy of ASTRAL-one in the
presence of duplications, losses, and incomplete lineage sorting.

2 Preliminaries
We denote a rooted (phylogenetic) tree by P = (T, ω). Here T is the
tree topology and is a binary rooted tree with the designated root vertex,
ρ(T ), of degree two, all internal nodes of degree three, and with leaves
bijectively labeled by elements of set Le(T ). For convenience, we identify
leaves with their labels. Further, tree topologies are planted, implying that
an additional root edge is attached to the root vertex. Then, ω specifies the
lengths of edges in T in coalescent units (i.e., the number of generations
normalized by the effective population size (Allman et al., 2011)). More
formally, ω : E(T )→ Q+. In particular, we assume that all edge lengths
are strictly positive. When the phylogenetic tree P is not clear from the
context, we will often use the notation TP and wP to refer to its tree
topology and its edge-length function, respectively.

An unrooted (phylogenetic) tree topology T is similar to the rooted
tree topology, but without a designated root and the root edge. That is, in
unrooted tree T all non-leaf vertices have degree 3.

We say that an edge e is external if it is incident with a leaf vertex, and
otherwise we call e internal. Further, given a setY ⊂ Le(T ), tree topology
T |Y is obtained from T by restricting the leaf-set to Y . A restricted
phylogenetic tree P |Y = (T |y , w|Y ) is then obtained by choosing the
functionw|Y that maintains the same leaf-to-root path lengths as in P (in
respect to the leaves in Y ).

1 Our extension of the consistency result to ASTRAL-multi was developed
independently from Hill et al., 2020.

A rooted topology T defines a partial order on its nodes: given two
nodes x and y we say x � y if x is a descendant of y (and x ≺ y if
additionally x 6= y). We say that two edges in a rooted tree are parallel if
neither edge is located on the path from the other edge to the root.

Quartets. A quartet is an unrooted tree topology with exactly four leaves.
Assuming that the leaves are a, b, c, and d, we denote the quartets
in Figure 1(left), 1(middle) and 1(right) as ab|cd, ac|bd, and ad|bc
respectively (based on the two cherries separated by the internal edge).

We say that a quartet q is displayed in a phylogenetic tree P , if the
unrooted tree topology of P restricted to the leaves in q (i.e., TP |Le(q)) is
equivalent to q. In this case, we write q ∈ P .

2.1 Unified DLCoal model

We now overview the unified duplication-loss-coalescence (DLCoal)
model (Rasmussen and Kellis, 2012).

Species tree. A species tree S = (TS , ωS) represents an evolutionary
history of species. Leaves of TS are labeled by the extant species names.

Locus tree. A locus tree L = (TL, ωL) represents a duplication/loss
history of a fixed gene. A locus tree is obtained from a species tree by
running the duplication/loss process (Rasmussen and Kellis, 2012; Legried
et al., 2020) top-down along the edges of the species tree. More specifically,
the duplication/loss process is a birth-death process with a fixed birth
(duplication) rate λ and death (loss) rate µ (Arvestad et al., 2003). The
birth-death process starts in the root edge of the species tree; whenever it
reaches a speciation point, the process splits into two copies and continues
independently in the children edges. See Figure 2 for an example. Note
that locus tree leaves are labeled by gene names.

A locus tree node is always one of the following two types:

(i) Speciation. Such node corresponds to a speciation event/node from
the species tree.

(ii) Duplication. Such node corresponds to a new locus creation event.

Remark. A duplication event is asymmetric, as one child (the mother
duplicate) follows the parent locus, and the other child (the daughter
duplicate) corresponds to a novel locus (Rasmussen and Kellis, 2012).
To account for that, we will often depict duplications as red dots on the
locus tree edges immediately below the duplication nodes, shifted towards
a daughter duplicate. That is, a red dot on an edge will indicate that this
point is a start of a new locus (see Figure 3 for an example). This will
ensure a consistent depiction of duplications for Section 3. Further, we
will refer to these points as duplication-points.
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Fig. 1: All three possible quartets on a, b, c, d leaves.

A B C

S

a1 b1 c1 a2 c2 c3

L

a1 b1 c1 a2 c2 c3

G

Dup+Lossesb-MSC

Fig. 2: An example of a gene tree G, locus tree L, and species tree S. Note that the arrows in the locus tree represent the duplication events, and the
cross represents a loss event. Further, the red circles on the gene tree represent the duplication-points. As coalescent (b-MSC) runs on the locus tree, the
coalescence of the new and the original loci is likely to happen above a duplication event; therefore, the duplication-points can appear in the middle of
gene tree edges, as shown in the figure.

a1 b1 c1 a2 c2 c3

Fig. 3: An alternative depiction of a locus tree from Figure 2 with red dots
representing duplication-points slightly shifted towards a novel locus.

Gene tree. A gene tree G = (TG, ωG) represents a gene family’s
evolutionary history. The gene tree is obtained from a locus tree by running
the bounded multispecies coalescent (b-MSC) process bottom-up along the
edges of the locus tree (Rasmussen and Kellis, 2012) (see Section 2.3 for
a more detailed description of that process). Figure 2 provides an example
of that process.

2.2 Multispecies coalescent (MSC) model

In the standard multispecies coalescent model (Rannala and Yang, 2003)
gene lineages are followed backwards in time (from the leaves to the root).

For simplicity, we assume that there is exactly one gene lineage starting
in every extant locus tree leaf. If two or more lineages enter the same locus
tree edge, then the coalescence history of these lineages is determined by
an exponential distribution.

In particular, for any two lineages a, b that entered the same edge
the probability that they coalesce within time x (specified in terms of
coalescent units) is as follows:

P [a, b coalesced within time x] = 1− e−x.

a b

.
.
. x

L

dup

d

Fig. 4: An example of a locus tree that illustrates the b-MSC constraints
for Section 2.3.

More generally, we denote the probability that i lineages coalesce into
j lineages within time x (j ≤ i) by gi,j(x). This value can be computed
using the following formula (Tavaré, 1984):

gi,j(x) =

i∑
k=j

(
exp

(
−
(k

2

)
x

)
(2k − 1)(−1)k−j

j!(k − j)!(j + k − 1)

·
k−1∏
m=0

(j +m)(i−m)

i+m

)
.

Further, note that if at any given moment in time multiple lineages
co-exist in the same edge, then any pair of these lineages have an equal
probability of coalescing in the next ∆t time. That is, the process is
symmetric.

2.3 Bounded MSC (b-MSC) model

The constraints on MSC in the unified DLCoal model appear due to
the duplication points. In particular, all lineages originating below a
daughter duplicate must coalesce below the respective duplication node.
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Fig. 5: (A): The balanced quartet representing the locus tree and displaying quartet ab|cd. The dotted circles indicate potential duplication locations that
can affect gene tree probabilities. (B)-(D): Specific duplication scenarios corresponding to Sections 3.1.1, 3.1.2, and 3.1.3, respectively.

For example, in Figure 3, the gene tree lineages corresponding to leaves
a2, c2, and c3 must coalesce below the root node.

More formally, assume that a duplication occurred at time-point d.
Note that, for convenience, we assume that all leaves are aligned in time
and are associated with time-point 0; further, we consider time to increase
as we go up the trees away from leaves. Now, leta and b be locus tree leaves
that are located below the duplication, which is at time-point d (i.e., a and
b belong to the new locus created by the duplication). Then we know that
lineages a and bmust coalesce prior to time-point d. Therefore, generally,
the probability that any two lineages a, b, which entered the same edge
below a duplication dup at time d, coalesce within time x is as follows
(see Figure 4 for a respective locus tree example):

P [a, b coalesced within time x | a, b coalesced prior to dup]

=
1− e−x

P [a, b coalesced prior to dup]
,

where P [a, b coalesced prior to dup] is determined by the original,
unbounded MSC model.

3 Quartet probabilities under b-MSC
To obtain our main result we need to compute the probabilities of each
quartet appearing in the gene tree based on a fixed locus tree topology.
Note that Allman et al., 2011 explicitly computed these probabilities
for unbounded MSC. In our case we need to incorporate cases, when
duplications (locus creation events) appear along the edges of the locus
tree.

Remark. From now on, for convenience, we restrict locus trees to
four leaves sampled from different species. That is, choosing (any) four
genes {a, b, c, d} from distinct species A,B,C,D, we consider the tree
L|{a,b,c,d}. Note that considering only four leaves may suppress other
duplication nodes along the locus tree edges. Therefore, we need to allow
for additional duplication-points along the locus tree edges. Further, if
there are multiple duplication-points along a single edge ofL|{a,b,c,d}, it
is sufficient to only consider the lowest duplication-point on that edge since
it indicates the lowest point, below which gene lineages must coalesce.

Without loss of generality assume that the locus tree L displays the
quartet ab|cd. Then there are two cases: either (i) L is a balanced rooted
tree or (ii) L is a caterpillar tree. We now explore both those cases.

Throughout this section we sometimes use abbreviations ‘coal.’ for
‘coalesce(d)’ and ‘dup.’ for ‘duplication’. Further, we abbreviate ‘obtained
in time t’ as simply ‘in t’.

3.1 L is balanced

For convenience, we set x := ωL(X), y := ωL(Y ) to be the lengths
of edges X and Y , respectively (see Figure 5(A)). We now explore all
possibilities of duplication placements on edges of L.

3.1.1 No duplications (unbounded MSC).
In this case quartet probabilities are given by Allman et al., 2011. That is,

P [ab|cd ∈ G] = 1−
2

3
e−(x+y);

P [ac|bd ∈ G] = P [ad|bc ∈ G] =
1

3
e−(x+y).

3.1.2 Duplications along the X or Y edges.
Assume that a duplication has occurred along the X and/or Y edge (see
Figure 5(C)). Recall that a duplication point indicates that gene lineages
below it in the locus tree must coalesce prior to the duplication (when
looking backwards in time). Therefore, if there is a duplication along the
X edge, then lineages corresponding to genes a and b must coalesce on
that edge. That is, the gene tree must display quartet ab|cd. Similarly, the
same is true if a duplication is located on the Y edge. Hence,

P [ab|cd ∈ G] = 1;

P [ac|bd ∈ G] = P [ad|bc ∈ G] = 0.

3.1.3 Root edge duplications
Assume that a duplication occurred on the root edge as shown in
Figure 5(D), and no duplications appear on X and Y edges. Then the
following holds.

P [ab|cd ∈ G] = P [ab|cd ∈ G | a, b, c, d coalesced before z]

= 1− P


a, b did not coal. on X;

c, d did not coal. on Y ;

ac|bd or ad|bc in t

∣∣∣∣∣a, b, c, d coal. before z


= 1−

2
3
e−xe−yP [4 lineages coalesced within time t]

P [a, b, c, d coalesced before z]

= 1−
2

3
e−(x+y) g4,1(t)

P [a, b, c, d coalesced before z]
;

P [ac|bd ∈ G] = P [ad|bc ∈ G]

=
1

3
e−(x+y) g4,1(t)

P [a, b, c, d coalesced before z]
.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btab414/6287614 by N

ational Anim
al D

isease C
entre user on 04 June 2021



Quartets DLC 5

(A)

a b

c

d
X

Y

(B)

a b

c

d
X

Y

(C)

a b

c

d
X

Y

t

(D)

a b

c

d
X

Y

z

t

Fig. 6: (A): The caterpillar quartet representing the locus tree and displaying quartet ab|cd. (B)-(D): Specific duplication scenarios corresponding to
Sections 3.2.2, 3.2.3, and 3.2.4, respectively.

3.1.4 Duplication at the root vertex
In Sections 4 and 5 we mainly consider cases when the locus tree root
corresponds to a locus creation event (i.e., there is a duplication-point on
one of the X or Y edges right below the root). In that case the gene tree
quartet probabilities are given by Lemma 3.1.

Lemma 3.1. Let L be a balanced locus tree displaying a quartet q with
the root of L corresponding to a duplication. Then P [q ∈ G | L] = 1.

Proof. Since the root of L is a duplication, we place a duplication-point
immediately below the root on one of the children edges (i.e., the edge
that corresponds to a novel locus). Therefore, quartet probabilities for L
are described in Section 3.1.2. That is, P [q ∈ G | L] = 1.

Remark. Note that potential duplications along the external edges do
not affect the coalescence process.

3.2 L is a caterpillar

As above, we set x := ωL(X), y := ωL(Y ) to be the lengths of edges
X and Y respectively (see Figure 6(A)). We now similarly explore all
possible duplication placements on the edges of L.

3.2.1 No duplications (unbounded MSC).
In this case the quartet probabilities are given by Allman et al., 2011. In
particular,

P [ab|cd ∈ G] = 1−
2

3
e−x;

P [ac|bd ∈ G] = P [ad|bc ∈ G] =
1

3
e−x.

3.2.2 X edge duplication.
Assume that there is a duplication on the X edge (and potentially more
duplications on other internal edges) as shown in Figure 6(B). Then,
similarly to the balanced case, it is not difficult to see that

P [ab|cd ∈ G] = 1;

P [ac|bd ∈ G] = P [ad|bc ∈ G] = 0.

3.2.3 Y edge duplication.
Assume that there is a duplication on Y and there are no duplications on
X as shown in Figure 6(C).

P [ab|cd ∈ G] = P [ab|cd ∈ G | a, b, c coal. before duplication]

= 1− P

a, b did not coalesce on X;

ac|bd or ad|bc in t

∣∣∣∣∣a, b, c coalesced before dup.


= 1−

2

3
e−x g3,1(t)

P [a, b, c coalesced before duplication]
;

P [ac|bd ∈ G] = P [ad|bc ∈ G] =
1

3
e−x g3,1(t)

P [a, b, c coal. before dup.]
.

3.2.4 Root edge duplication.
Assume that a duplication occurred on the root edge and no duplications
occurred along the X and Y edges (see Figure 6(D)).

We start with computing the probability of the ac|bd quartet.

P [ac|bd ∈ G] =

P


a, b did not coalesce on X;

a, c coalesced on Y first;

remaining lineages coalesced before z


P [a, b, c, d coalesced before the duplication]

+

P


a, b did not coalesce on X;

no coalescence on Y ;

ac|bd obtained in time t


P [a, b, c, d coalesced before the duplication]

=
1
3
e−x

(
g3,2(y)g3,1(t) + g3,1(y)g2,1(t) + g3,3(y)g4,1(t)

)
P [a, b, c, d coalesced before the duplication]

.

Further, by symmetry P [ac|bd ∈ G] = P [ad|bc ∈ G]. Therefore,
P [ab|cd ∈ G] equals

1−
2

3
e−x

(
g3,2(y)g3,1(t) + g3,1(y)g2,1(t) + g3,3(y)g4,1(t)

P [a, b, c, d coalesced before the duplication]

)
.

3.3 Core observations

It is not difficult to see from the above derivations that for a fixed locus
tree topology that displays ab|cd (balanced or caterpillar), if one increases
the length of edge X then the probability P [ab|cd ∈ G] grows. More
formally, see Lemma 3.2.

Lemma 3.2. Let L1 and L2 be two caterpillar trees displaying ab|cd
withωL1 (X) < ωL2 (X) andωL1 (Y ) = ωL2 (Y ) as shown in Figure 7.
Further, let L1 and L2 have identical locations of duplication-points on
the internal edges. That is, a duplication-point d1 on L1 always has a
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a b

c

dX

Y

a b

c

d

L1 L2

Fig. 7: Locus trees L1 and L2 with equal lengths of the Y edges and
different lengths of the X edges. The dashed lines highlight that the
duplication-points are located identically on the two trees relatively to
their roots.

counterpart duplication-point d2 onL2 with the same distance to the root
and vice versa (see Figure 7).Then

P [ab|cd ∈ G | L1] = P [ab|cd ∈ G | L2] = 1,

if L1 (and L2) have a duplication-point on edge X , and

P [ab|cd ∈ G | L1]<P [ab|cd ∈ G | L2],

otherwise.

Further, from the above derivations we observe the following lemma.

Lemma 3.3. For a locus tree L that displays ab|cd (regardless of
duplication locations) we have P [ab|cd ∈ G | L] > P [ac|bd ∈ G |
L] = P [ad|bc ∈ G | L].

The proofs of Lemmas 3.2 and 3.3 are given in Section S1 of the
Supplementary Material.

4 Consistency of ASTRAL-one
We now prove ASTRAL-one is statistically consistent under the DLCoal
model.

Theorem 4.1. Let S = (TS , wS) be a fixed species tree and let G be a
collection of gene trees that independently evolved within S according to
the DLCoal process. Then, as the number of trees in G goes to infinity, the
probability that T̂ , the unrooted tree estimate by ASTRAL-one, is equal to
the unrooted tree topology TS goes to 1.

For this result, it is sufficient (see Legried et al., 2020) to prove the
following:

Theorem 4.2. Let S be a species tree with four leaves that displays
quartet AB|CD, and let G be a gene tree that evolved in S according to
the DLCoal process. If one picks genesa, b, c, d (that correspond to species
A,B,C,D respectively) uniformly at random (assuming they exist) from
G, then P [ab|cd ∈ G] > P [ac|bd ∈ G] = P [ad|bc ∈ G].

Theorem 4.2 is sufficient to prove Theorem 4.1, because ASTRAL,
as a distance-minimization method, ‘prefers’ the most dominant quartets
among the input trees. Then, by Theorem 4.2, as the number of input trees
goes to infinity, the most dominant quartet among input trees for each
4-tuple of species becomes (almost surely) the true species tree quartet;
hence, it is almost surely picked by ASTRAL-one (see Legried et al., 2020
for a formal proof). Therefore, the remainder of the section is dedicated to

A B C D

a b c d

Fig. 8: An example of the partial embedding of a locus tree into balanced
S. The blue lineages correspond to the locus tree. Note that the five locus
lineages crossing the dashed speciation line are root lineages.

the proof of Theorem 4.2. We first prove the theorem for S being balanced
and then for S being a caterpillar.

Remark. To prove Theorem 4.2, we will use some of the results from
Legried et al., 2020, who proved that ASTRAL is consistent under the
duplication/loss process. To see how their result relates to our problem,
observe that a ‘gene tree’ in Legried et al., 2020 notation is equivalent
to the locus tree in the broader DLCoal process. Therefore, below we
explicitly use some of Legried et al. results to draw conclusions about the
locus tree probabilities.

4.1 S is balanced

Similarly to Legried et al., 2020, we first implicitly condition our
probability space on the event that at least one of each a, b, c and d genes
must be present inG. Further, we condition our probability space on a fixed
number of locus tree lineages existing at the speciation point at the root
of S. That is, consider the duplication/loss (birth/death) process occurring
within the root branch of S. Then, letRL be the random variable denoting
the number of locus lineages at the speciation point (see Figure 8). We are
going to prove that

P [ab|cd ∈ G | RL = l] > P [ac|bd ∈ G | RL = l]

= P [ad|bc ∈ G | RL = l]

for any fixed value of l = {1, 2, . . .}. Therefore, for convenience, we
do not explicitly write the condition RL = l in probability equations
throughout the rest of the proof. Further, we refer to the set of these l locus
lineages as root lineages.

Now let ia ∈ {1, . . . , l} be the index of a root lineage, from which
gene a has descended. Similarly, we define ib, ic, and id. For better
readability of the remainder of the proof, we introduce the notation to
describe scenarios of the type ia = ib = ic 6= id. In particular, we
write (abc, d) for that scenario, we write (ab, cd) to denote the scenario
ia = ib 6= ic = id, and we write (a, b, c, d) to denote the scenario,
where all ix are distinct.

Then, by the law of total probability, we have

P [ab|cd ∈ G] =
∑
I

P [I, ab|cd ∈ G],

where I is one of the above scenarios (i.e., a partition of set {a, b, c, d} or a
combination of such partitions). In particular I ∈ {(a, b, c, d); (ab, cd)∨
(ac, bd); (ab, c, d) ∨ (cd, a, b) ∨ (ac, b, d) ∨ (bd, a, c); (abc, d) ∨
(abd, c)∨(acd, b)∨(bcd, a)∨(abcd); (ad, bc)∨(ad, b, c)∨(bc, a, d)}.
Observe that we cover all possible scenarios/partitions here.

Our goal is to prove that P [ab|cd ∈ G] > P [ac|bd ∈ G]. Note that
P [ad|bc ∈ G] = P [ac|bd ∈ G] follows from the fact that swapping c
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a b c d a b c d

Fig. 9: Left: the embedding of a locus tree L(ab,cd). Right: the embedding of a locus tree L(ac,bd).

and d leaf labels does not affect the probabilities. Let us carry out the proof
by considering different values of I . That is, our strategy is to prove that
P [I, ab|cd ∈ G] ≥ P [I, ac|bd ∈ G] for all of the above I , and at least
in one case the strict inequality holds.

To facilitate the proofs in each case, first consider the following
observations:

Observation 4.1. Random variables ix and iy are independent for any
x ∈ {a, b} and y ∈ {c, d}.
However, ia can be dependent on ib and ic can be dependent on id.

Proof. Observe that the duplication/loss process runs independently in
the parallel branches of the species tree. Therefore, once we condition the
probability space on a fixed number of lineages at the divergence point
(i.e., fixed l), the random variables ix and iy become independent. In
particular, consider any specific realization of the duplication/loss process
below the root lineages and let i be a root lineage that a randomly picked
locus a belongs two (i.e., ia = i). Then, we can swap the ‘left’ subtrees
below two distinct root lineages i and j (the subtrees that lead to speciesA
andB) so that ia = j and the probability of that event is not altered due to
symmetry. Note that ic in that case remains the same. Since we can always
reshuffle root lineages like that, we can think of a as ‘choosing’ one of the
l root lineages uniformly at random, regardless of a realization of ic. The
same is also true for all other pairs of x ∈ {a, b} and y ∈ {c, d}.

However, since a and b develop (at least partially) in the same species
tree branch random variables ia and ib can be dependent. Similarly for ic
and id.

Observation 4.2. Due to the symmetry of the duplication/loss process,
we have

P [ix = k] = 1/l

for any x ∈ {a, b, c, d} and k ∈ {1, 2, . . . , l}. Then, by Claim 4.1,

P [ix = iy ] =

l∑
k=1

P [ix = k]P [iy = k] = l
1

l2
= 1/l

for any x ∈ {a, b} and y ∈ {c, d}.

Lemma 4.1 (Due to Lemma 1 in Legried et al., 2020). P [ia = ib] and
P [ic = id] are greater than or equal to 1

l
.

4.1.1 Case I = (a, b, c, d)

By the symmetry of the duplication/loss process, reshuffling the ia, ib, ic,
and id labels will not change the probability of a fixed duplication/loss
history in the root edge. Therefore, we have P [ab|cd ∈ G | I] =

P [ac|bd ∈ G | I]. Hence, P [ab|cd ∈ G, I] = P [ac|bd ∈ G, I].

A B

N1=3 N2=2

. . .

Fig. 10: An example of a partial locus tree embedding in the left part of
the species tree below the root speciation. The two shown root lineages
expand (through duplication) into N1 = 3 and N2 = 2 lineages at the
moment of A/B speciation, respectively

4.1.2 Case I = (ab, cd) ∨ (ac, bd)

We need to show that

P [ab|cd ∈ G, I] = P [ab|cd ∈ G | (ab, cd)] P [(ab, cd)]

+ P [ab|cd ∈ G | (ac, bd)] P [(ac, bd)]

≥ P [ac|bd ∈ G | (ab, cd)] P [(ab, cd)]

+ P [ac|bd ∈ G | (ac, bd)] P [(ac, bd)]

= P [ac|bd ∈ G, I].

Observe the following.

Lemma 4.2. P [ab|cd ∈ G | (ab, cd)] = P [ac|bd ∈ G | (ac, bd)] =

1.

Proof. Consider the locus trees L(ab,cd) and L(ac,bd) for the (ab, cd)

and (ac, bd) cases respectively (see Figure 9). Note that we only consider
the part of the locus tree restricted to the four selected genes a, b, c, d.
It is not difficult to see that both L(ab,cd) and L(ac,bd) are balanced.
Therefore, by Lemma 3.1, P [ab|cd ∈ G | (ab, cd)] = P [ac|bd ∈ G |
(ac, bd)] = 1.

Corollary 4.1. P [ac|bd ∈ G | (ab, cd)] = P [ab|cd ∈ G |
(ac, bd)] = 0.
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Lemma 4.3. P [(ab, cd)] ≥ P [(ac, bd)].

Proof. Our proof is similar to the proof of Lemma 1 in Legried et al.,
2020. In particular, let Ni ∈ {0, 1, . . .} be the number of locus lineages
that descended from a root lineage i ∈ {1, . . . , l} and that existed
immediately after the speciation into speciesA andB. Similarly, we define
variables Mi denoting the number of lineages that existed immediately
after the speciation at the parent ofC andD. See Figure 10 for an example
of Ni variables. By N = (N1, . . . , Nl) and M = (M1, . . . ,Ml) we
denote the vectors of Ni and Mi variables, respectively.

Observe that P [(ab, cd)] = P [ia = ib, ic = id] − P [(abcd)] and
P [(ac, bd)] = P [ia = ic, ib = id] − P [(abcd)]. Further, note that
when conditioned on specific values of N and M, ia = ic and ib = id
events become independent. That is, similarly to Claim 4.1, conditioning
on the number of lineages at the divergence point for species A and B
eliminates the dependency between ia and ib (and similarly for ic and id).
After conditioning onN andM, random variables ia, ib, ic, and id are all
independent. In particular, we can think of lineagesa and b as choosing one
of the

∑
Ni lineages independently and uniformly at random. Similarly,

c and d choose one of the
∑
Mi lineages independently and uniformly at

random.
Then, for fixed values of the N and M vectors we have

P [ia = ib, ic = id | N,M] =

l∑
j=1

(
P [ia = j | N]P [ib = j | N]

)

·
l∑

j=1

(
P [ic = j |M]P [id = j |M]

)

=

∑
j(N2

j )

(
∑

j Nj)2

∑
j(M2

j )

(
∑

j Mj)2
.

The last equality is due to P [ia = j | N] =
Nj∑l
i=1Ni

. That is, as

mentioned above, due to the symmetry of the duplication/loss process a
has a uniform probability of being ‘sampled’ from any of the lineages
existing at the divergence point of species A and B. Similar relations can
then be easily derived for ib, ic, and id.

Further, following the same idea, we have

P [ia = ic, ib = id | N,M] =

∑
j(NjMj)

(
∑

j Nj)(
∑

j Mj)

∑
j(NjMj)

(
∑

j Nj)(
∑

j Mj)
.

Then, by Cauchy-Schwartz, (
∑

j(NjMj))2 ≤
∑

j(N2
j )
∑

j(M2
j ) and

therefore P [ia = ib, ic = id | N,M] ≥ P [ia = ic, ib = id |
N,M] for any realization of vectors N and M. That is, P [(ab, cd)] ≥
P [(ac, bd)].

Using the above results, we have

P [ab|cd ∈ G, I] = P [(ab, cd)] ≥ P [(ac, bd)] = P [ac|bd ∈ G, I].

4.1.3 Case I = (ab, c, d) ∨ (cd, a, b) ∨ (ac, b, d) ∨ (bd, a, c)

For convenience, from now on we denote the event (ab, c, d)∨ (cd, a, b)

by AB and the event (ac, b, d) ∨ (bd, a, c) by AC.
We prove that

P [ab|cd ∈ G, I]

= P [ab|cd ∈ G | AB] P [AB] + P [ab|cd ∈ G | AC] P [AC]

≥ P [ac|bd ∈ G | AB] P [AB] + P [ac|bd ∈ G | AC] P [AC]

= P [ac|bd ∈ G, I].

Consider the following results.

Lemma 4.4. P [ab|cd ∈ G | AB] ≥ P [ac|bd ∈ G | AC].

Proof. Note that fixing the number of root lineages allows us to treat
the duplication/loss processes independently for the root edge and for the
lower edges. LetLr be a duplication/loss scenario (i.e., a fixed realization
of the duplication/loss process) in the root edge conditioned on RL = l.
Then, without loss of generality assume that in case (ab, c, d), we have
ia = ib = 1, ic = 2, and id = 3; in case (cd, a, b) we assume
ic = id = 1, ia = 2, and ib = 3. Similarly, under (ac, b, d) we assume
ia = ic = 1, ib = 2, id = 3 and under (bd, a, c) we assume that
ib = id = 1, ia = 2, ic = 3. Then, a fixed Lr scenario forces the same
‘top’ structure of the locus trees in all four cases.

Given that (ab, c, d) and (cd, a, b) cases are virtually identical for the
remainder of the proof (since they are symmetric), for simplicity, we will
only consider the (ab, c, d) case. Similarly, under the AC event, we will
only consider case (ac, b, d).

Then, Figures 11 and 12 depict two possible topologies of the Lr
scenario when acting on the root lineages 1, 2, and 3. Observe that the
third topology, where root lineages 1 and 3 form a cherry, is identical in
terms of analysis to the topology depicted in Figure 11, and therefore is
not considered.

Note that in Figure 11, the resulting locus treesL(ab,c,d) andL(ac,b,d)

are both caterpillars, while in Figure 12, the locus trees are both balanced.
This separation is achieved because we condition on a fixed Lr scenario.
We now consider these two cases individually.

(i) L(ab,c,d) and L(ac,b,d) are caterpillars (see Figure 11). Let xab
be the distance (in coalescent units) from the root speciation event to
the divergence of a and b in the locus tree under the (ab, c, d) case
(as shown on the figure). Note that xab ≥ 0. There are two cases to
consider.

• There is a duplication along the xab lineage. Then, as shown in
Section 3.2.2, P [ab|cd ∈ G | AB,Lr] = 1. That is, P [ab|cd ∈
G | AB,Lr] ≥ P [ac|bd ∈ G | AC,Lr].

• No duplications along thexab lineage. SinceL(ab,c,d) andL(ac,b,d)

are both caterpillars, we denote their edges by X and Y as shown
in Figure 6(A). In particular we denote the X edge in L(ab,c,d)

by X(ab,c,d) and the X edge in L(ac,b,d) by X(ac,b,d). Then,
w(X(ab,c,d)) = x′ + xab, whereas w(X(ac,b,d)) = x′ (note
that x′ is as depicted in Figure 11). Further, the two locus trees are
identical in terms of the duplication locations in their internal edges.

Then, by Lemma 3.2, it is not difficult to see that P [ab|cd ∈ G |
Lr, (ab, c, d)] ≥ P [ac|bd ∈ G | Lr, (ac, b, d)] for any fixed Lr .
Therefore, the lemma holds.

(ii) L(ab,c,d) andL(ac,b,d) are balanced (see Figure 12). By Lemma 3.1,
P [ab|cd ∈ G | AB,Lr] = 1 and P [ac|bd ∈ G | AC,Lr] = 1.
Note that we can apply Lemma 3.1, since the roots of the locus trees
in these cases must be duplications.

Lemma 4.5. P [ab|cd ∈ G | AC] ≥ P [ac|bd ∈ G | AB].

Proof. This result follows from Lemma 4.4 (i.e., P [ab|cd ∈ G |
AB] ≥ P [ac|bd ∈ G | AC]) and the following relations:

2P [ab|cd ∈ G | AC] + P [ac|bd ∈ G | AC] = 1;

2P [ac|bd ∈ G | AB] + P [ab|cd ∈ G | AB] = 1.

Observation 4.3. By Lemma 3.3, we have P [ac|bd ∈ G | AC] ≥
P [ab|cd ∈ G | AC]. Then, combining this with Lemma 4.5, we have
P [ac|bd ∈ G | AC] ≥ P [ac|bd ∈ G | AB].

Lemma 4.6. P [AB] ≥ P [AC].
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x
′

a b c d
x a

b

x
′

a b c d

Fig. 11: Caterpillar locus trees L(ab,c,d) (left) and L(ac,b,d) (right) embedded into the species tree. The red circles represent the potential duplication
locations that could influence the gene tree probabilities. Note that the Lr scenarios in the root edges are identical. That is, x′ lengths are equal, and the
duplication locations above the dashed speciation lines are identical.

a b c d a b c d

Fig. 12: Balanced locus trees L(ab,c,d) (left) and L(ac,b,d) (right) embedded into the species tree.

Proof. We give the proof in Section S2 of Supplementary Material.

Summarizing the above results we have.

P [ab|cd ∈ G | AB] P [AB] + P [ab|cd ∈ G | AC] P [AC]

≥ P [ac|bd ∈ G | AC] P [AB] + P [ac|bd ∈ G | AB] P [AC]

≥ P [ac|bd ∈ G | AC] P [AC] + P [ac|bd ∈ G | AB] P [AB].

Note that the first inequality is due to Lemmas 4.4 and 4.5. The last
inequality is due to Lemma 4.6 and Claim 4.3.

That is, our main statement holds.

4.1.4 CaseI = (abc, d) ∨ (abd, c) ∨ (acd, b) ∨ (bcd, a) ∨ (abcd).
In all five cases locus tree L displays the quartet ab|cd. Therefore, by
Lemma 3.3 P [ab|cd ∈ G | I] > P [ac|bd ∈ G | I]. Observe that we
obtain the strict inequality in this case.

4.1.5 Case I = (ad, bc) ∨ (ad, b, c) ∨ (bc, a, d).
In this case it is not difficult to see thatL displays quartet ad|bc. Therefore
(as can be seen from the derivations in Section 3), P [ab|cd ∈ G | I] =

P [ac|bd ∈ G | I].
This concludes the proof for balanced S.

4.2 S is a caterpillar

Without loss of generality assume that S is as it appears in Figure 13.
Similarly to the balanced case, we implicitly condition the probability
space on a fixed number of loci (lineages) existing at the moment of
speciation as shown in the figure. Note that, while in the balanced case we
considered root lineages, in the caterpillar scenario we consider lineages
at the least common ancestor of A,B, and C. That is, we refer to these
lineages/loci as ABC-lineages. Finally, as in the balanced case, we denote
the number of ABC-lineages by l.

We then use the ia, ib, ic notation in the same way as in the previous
section (while referring to indices of ABC-lineages). Further, I =

{(a, b, c); (ab, c); (ac, b); (bc, a); (abc)} scenarios describe relations
between ia, ib, and ic.

A B C

D

a b c

d

Fig. 13: An example of the locus tree embedding into a caterpillar species
tree. The three locus lineages crossing the dashed speciation line are the
ABC-lineages.

We now prove that P [ab|cd ∈ G, I] ≥ P [ac|bd ∈ G, I] for all I
in {(a, b, c); (ab, c)∨ (ac, b); (bc, a); (abc)}. Moreover, for at least one
such I , the strict inequality holds; in particular, see case 4.2.4 below.

4.2.1 Case I = (a, b, c).
By the symmetry of the duplicaion/loss process, reshuffling the ia, ib, ic
labels will not affect the probability of a fixed duplication/loss history in
the root edge. Therefore, we have P [ab|cd ∈ G | I] = P [ac|bd ∈ G |
I] = P [ad|bc ∈ G | I].

Then, P [ab|cd ∈ G, I] = P [ab|cd ∈ G | I] P [I] = P [ac|bd ∈
G | I] P [I] = P [ac|bd ∈ G, I].

4.2.2 Case I = (ab, c) ∨ (ac, b).
The proof in this case is similar to case 4.1.3 for balanced S. In particular,
observe the following.

Lemma 4.7. P [(ab, c)] ≥ P [(ac, b)].

Proof. It is sufficient to show that P [ia = ib] ≥ P [ia = ic]. By
Claim 4.2, P [ia = ic] = 1/l. Further, Legried et al., 2020 showed that
P [ia = ib] ≥ 1/l (see Lemma 1 in Legried et al., 2020).
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Lemma 4.8. The following holds.

(i) P [ab|cd ∈ G | (ab, c)] ≥ P [ac|bd ∈ G | (ac, b)];
(ii) P [ab|cd ∈ G | (ac, b)] ≥ P [ac|bd ∈ G | (ab, c)];

(iii) P [ac|bd ∈ G | (ac, b)] ≥ P [ac|bd ∈ G | (ab, c)].

Proof. The proofs of these statements are similar to the proofs of the
respective statements in Section 4.1.3. In particular, (i) corresponds to
Lemma 4.4, (ii) corresponds to Lemma 4.5, and (iii) corresponds to
Claim 4.3 from Section 4.1.3.

Then, similarly to Section 4.1.3 we have

P [ab|cd ∈ G, I] = P [ab|cd ∈ G | (ab, c)] P [(ab, c)]

+ P [ab|cd ∈ G | (ac, b)] P [(ac, b)]

≥ P [ac|bd ∈ G | (ac, b)] P [(ab, c)]

+ P [ac|bd ∈ G | (ab, c)] P [(ac, b)]

≥ P [ac|bd ∈ G | (ac, b)] P [(ac, b)]

+ P [ac|bd ∈ G | (ab, c)] P [(ab, c)]

= P [ac|bd ∈ G, I].

4.2.3 Case I = (bc, a).
In this case P [ab|cd ∈ G | I] = P [ac|bd ∈ G | I], since the locus tree
displays the third quartet, ad|bc.

4.2.4 Case I = (abc).
The locus tree displays quartet ab|cd; therefore, by Lemma 3.3 and the
law of total probability, we have P [ab|cd ∈ G | I] > P [ac|bd ∈ G | I].

5 Consistency of ASTRAL-multi
We now extend our consistency result for ASTRAL-one to another variant
of ASTRAL adapted to multi-locus input trees, called ASTRAL-multi.

Theorem 5.1. Let S = (TS , wS) be a fixed species tree and let G be a
collection of gene trees that independently evolved within S according to
the DLCoal process. Then, as the number of trees in G goes to infinity, the
unrooted tree estimate by ASTRAL-multi converges almost surely to TS .

LetS be a species tree with 4 leaves that displaysAB|CD, and letG be
a gene tree that evolved in S according to the DLCoal process. Let Gab|cd
(respectively Gac|bd and Gad|bc) be the number of ab|cd (respectively
ac|bd and ad|bc) quartets inG. Then, to prove Theorem 5.1 it is sufficient
to show that the following result holds (Legried et al., 2020):

Theorem 5.2. E[Gab|cd] > max
(
E[Gac|bd], E[Gad|bc]

)
.

The remainder of the section is dedicated to the proof of Theorem 5.2.
In fact, due to symmetry, it is sufficient to show that E[Gab|cd] >

E[Gac|bd]. The general structure of the proof is similar to the proof of
consistency for ASTRAL-one in the previous section. We present the proof
for balanced S, and then briefly discuss the proof for caterpillar S.

Remark. Some results in this section hold almost surely. Since this is
sufficient for the proof of the theorem, we do not specify this explicitly.

5.1 Proof of Theorem 5.2

As mentioned above, we assume that S is balanced. As before, we
implicitly condition the probability space (and the expected values) on
a fixed number of root lineages l. That is, we claim that Theorem 5.1 holds
for any fixed value of l.

We now introduce our core notation for the proof. Similarly to the
Gab|cd notation, we let Lab|cd (respectively Lac|bd and Lad|bc) denote the
number of ab|cd (respectively ac|bd and ad|bc) quartets in the locus tree
L. Further, for a fixed scenario I (e.g., scenario ia = ib = 1, ic =

2, id = 3) let LI
ab|cd be the number of ab|cd quartets in the locus tree

that follow the scenario I . Further, GI
ab|cd be the number of ab|cd quartets

in G that ‘appeared’ from one of the LI
ab|cd quartets. Similarly we define

LI
ac|bd,L

I
ad|bc,G

I
ac|bd, and GI

ad|bc.

Consider any I 6= (abcd). Note that the root of locus tree L|{a,b,c,d}
must be a duplication for such I (because I involves at least two root
lineages). Then, if I always defines balanced quartets, we have GI

q = LI
q

for any q ∈ {ab|cd, ac|bd, ad|bc} by Lemma 3.1. In particular, we note
the following:

Observation 5.1. For any q ∈ {ab|cd, ac|bd, ad|bc} we have

G(ab,cd)
q = L(ab,cd)

q ;

G(ac,bd)
q = L(ac,bd)

q .

Further, we will only consider scenarios that uniquely determine the
quartet types in the locus tree; therefore, we will typically omit the
subscript in the LI

q notation. For example, we write L(ab,cd) instead of

L(ab,cd)
ab|cd , since ab|cd is the only type of quartets that can appear under

scenario (ab, cd).
Given a fixed root lineage i, letAi be the random variable denoting the

number of a leaves generated by that lineage. Similarly, we define random
variables Bi, Ci, and Di. By symmetry, E[A1] = E[A2] = . . . =

E[Al] (with similar relations holding for Bi, Ci,Di). Then, observe the
following:

Observation 5.2. Since the duplication/loss process runs independently
in the parallel branches of the species tree,X i is independent fromYj for
any X ∈ {A,B}, Y ∈ {C,D}, and i, j ∈ {1, . . . , l}.

Observation 5.3. By the symmetry of the duplication/loss process, we
have

E[X i] = E[X j ]

for all X ∈ {A,B, C,D} and i, j ∈ {1, 2, . . . , l}.

Further, the following lemma is due to Legried et al.

Lemma 5.1 (Lemma 2 in Legried et al., 2020).

E[A1 B1] ≥ E[A1]E[B1];

E[C1D1] ≥ E[C1]E[D1].

We now outline several key corollary statements.

Corollary 5.1.

E[L(ab,cd)] ≥ E[L(ac,bd)];

E[L(ab,c,d)] ≥ E[L(ac,b,d)];

E[Lia=ib=1, ic=2, id=3] ≥ E[Lia=ic=1, ib=2, id=3].

Proof. To prove the first relationship, note that the duplication/loss
process occurs independently below distinct root lineages. Then, we have

E[L(ab,cd)] = l(l − 1)E[A1 B1] E[C1D1]

≥ l(l − 1)E[A1] E[B1] E[C1] E[D1]

= l(l − 1)E[A1 C1] E[B1D1] = E[L(ac,bd)].

The other two relationships can be established similarly.
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We now consider the following comprehensive set of scenarios:
I ∈ {(a, b, c, d); (ab, cd)∨ (ac, bd); (ab, c, d)∨ (ac, b, d); (cd, a, b)∨
(bd, a, c); (abc, d)∨ (abd, c)∨ (acd, b)∨ (bcd, a)∨ (abcd); (ad, bc)∨
(ad, b, c) ∨ (bc, a, d)}. For each I we will prove that E[GI

ab|cd] ≥
E[GI

ac|bd] and for at least one I the strict inequality holds.

5.1.1 Case I = (a, b, c, d)

By the symmetry of the duplication/loss process in the root edge, we have

E[G(a,b,c,d)
ab|cd ] = E[G(a,b,c,d)

ac|bd ] = E[G(a,b,c,d)
ad|bc ].

5.1.2 Case I = (ab, cd) ∨ (ac, bd)

By Claim 5.1, GI
ab|cd = L(ab,cd) and GI

ac|bd = L(ac,bd).
Then, combining this with Corollary 5.1, we have

E[GI
ab|cd] = E[L(ab,cd)] ≥ E[L(ac,bd)] = E[GI

ac|bd].

5.1.3 Case I = (ab, c, d) ∨ (ac, b, d)

Consider a fixed duplication-loss scenario, Lr , in the root edge of S. In
this section we implicitly condition the probability space on Lr . That is,
we prove that E[GI

ab|cd] ≥ E[GI
ac|bd] for each Lr .

Due to symmetry, we consider the following two core scenarios:
AB := (ia = ib = 1, ic = 2, id = 3) and AC := (ia = ic =

1, ib = 2, id = 3). It is then sufficient to show the following:

Lemma 5.2.

E[GAB
ab|cd] + E[GAC

ab|cd] ≥ E[GAB
ac|bd] + E[GAC

ac|bd].

Proof. Due to Lemma 4.4, it is not difficult to see that for any quartet
on {a, b, c, d} that evolved according to scenario AB or AC, we have
P [ab|cd ∈ G | AB] ≥ P [ac|bd ∈ G | AC]. Therefore, we have

E[GAB
ab|cd] ≥ E[LAB ] P [ac|bd ∈ G | AC].

Similarly, due to Lemma 4.5, we know that P [ab|cd ∈ G | AC] ≥
P [ac|bd ∈ G | AB]. Therefore,

E[GAB
ac|bd] ≤ E[LAB ] P [ab|cd ∈ G | AC].

Further, note that P [ac|bd ∈ G | AC] and P [ab|cd ∈ G | AC] do
not depend on the choice of the {a, b, c, d} lineages, but only depend on
the scenario Lr (see Figures 11 and 12 (right)). Hence,

E[GAC
ac|bd] = E[LAC ] P [ac|bd ∈ G | AC];

E[GAC
ab|cd] = E[LAC ] P [ab|cd ∈ G | AC]

Combining all of the above relations we have

E[GAB
ab|cd] + E[GAC

ab|cd] ≥E[LAB ] P [ac|bd ∈ G | AC]

+ E[LAC ] P [ab|cd ∈ G | AC];

E[GAC
ac|bd] + E[GAB

ac|bd] ≤E[LAC ] P [ac|bd ∈ G | AC]

+ E[LAB ] P [ab|cd ∈ G | AC].

We can now conclude the proof by noting that E[LAB ] ≥ E[LAC ]

(by Corollary 5.1) and P [ac|bd ∈ G | AC] > P [ab|cd ∈ G | AC] (by
Lemma 3.3).

5.1.4 Case I = (cd, a, b) ∨ (bd, a, c)

This case is symmetric to I = (ab, c, d)∨ (ac, b, d). Therefore, the proof
is similar.

5.1.5 CaseI = (abc, d) ∨ (abd, c) ∨ (acd, b) ∨ (bcd, a) ∨ (abcd)

All quartets in the locus tree under each of these scenarios are ab|cd. Then,
by Lemma 3.3, P [ab|cd ∈ G | I]>P [ac|bd ∈ G | I] for each of the
LI
ab|cd quartets. Therefore,

E[GI
ab|cd] > E[GI

ac|bd].

5.1.6 Case I = (ad, bc) ∨ (ad, b, c) ∨ (bc, a, d)

All quartets in the locus tree under each of these scenarios are ad|bc. It is
then not difficult to see that E[GI

ab|cd] = E[GI
ac|bd].

5.2 Caterpillar species tree

We now briefly discuss the proof strategy for Theorem 5.2 when S is
a caterpillar. Similarly to Section 4.2, we condition the duplication/loss
process on a fixed number of ABC-lineages (l) – see Figure 13. Adapting a
similar notation to Section 5.1, letAi,Bi, Ci denote the random variables
for the number of a, b, and c genes, respectively, below the i-th ABC-
lineage (in the locus tree). Further, let D denote the total number of d
leaves. It is then not difficult to show that D is independent from X i for
anyX ∈ {A,B, C}. Further,Ai and Bi are independent from Cj for any
i, j ∈ {1, 2, . . . , l} (analogously to Claim 5.2). Claim 5.3 also upholds
when we restrict X to {A,B, C}. Finally, Lemma 5.1 is applicable in the
caterpillar case as well; i.e., E[A1 B1] ≥ E[A1]E[B1].

We now need to consider the following scenarios: I ∈
{(a, b, c); (ab, c) ∨ (ac, b); (bc, a); (abc)} and prove that GI

ab|cd ≥
GI

ac|bd for all such I . It is then not difficult to do so, since I = (a, b, c)

is analogous to Case 5.1.1 from Section 5.1, I = (ab, c) ∨ (ac, b) is
analogous to Case 5.1.3, I = (bc, a) is analogous to Case 5.1.6, and
I = (abc) is analogous to Case 5.1.5. Further, under I = (abc) the
inequality GI

ab|cd > GI
ac|bd is strict, similarly to Case 5.1.5. That is,

Theorem 5.2 holds.

6 Conclusion
For the first time, we investigated and established statistical properties of
a popular species tree inference method under the powerful duplication-
loss-coalescence model. We proved that two natural versions of ASTRAL
(adapted for the duplication-loss shaped gene families) are statistically
consistent under DLCoal. Our result reinforces the practical value of
ASTRAL and other quartet-based methods in the area of evolutionary
inference. In addition to our work, Hill et al. (Hill et al., 2020) studied
the rate of convergence of ASTRAL under DLCoal. In the future, we
anticipate that other statistically consistent methods under DLCoal will be
discovered, and the methods will be compared based on their theoretical
rate of convergence and simulation studies, advancing the accuracy of
evolutionary inference.
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